Paraoxonase-1 192 enzyme polymorphism in non-syndromic clefting: in patients and parents

Orofasyal yarıkların büyük çoğunluğu genellikle nonsendromiktir ve iki farklı gruba ayrılabilir: yarık damak ile birlikte veya olmaksızın yarık dudak ve sadece yarık damak. Her ikisinin de genetik komponentleri oldukça karmaşıktır, ayrıca çevresel faktörler de palatogenezde etkilidir ve bir genin veya lokusun izole edilmesi oldukça zordur. Özellikle epitelyal- mezenkim transformasyonu damak bütünlüğünün sağlanmasında kritik bir olaydır. Damak formasyonunda, apoptoz birbirine karşılıklı gelen epitelin düzgün damak yapısını oluşturmasını sağlamak için yapışmayı ve dokunmayı artırır. Apoptoz, vücutta gelişim sırasında organelleri şekillendirmek için önemlidir. Damak formasyonunda oksidatif stresin epitelyal apoptoza neden olabileceğini ileri sürmekteyiz. Reaktif oksijen ürünlerinin üretimi ile ve hücre içi antioksidatif enzimlerin ve hücre dışı antioksidatif mekanizmaların aşılması ile oksidatif stres meydana gelir. Aşırı oksidatif stres hücrede peroksidatif hasar oluşturur ve hücre fonksiyonunu değiştirerek patolojik etkilere neden olur. Paraoksonaz enzimi antioksidatif mekanizmada etkili bir serum enzimidir. Bu çalışmamızda oksidatif stres ve yarık dudak/damak palatogenezinde ilişkisini ve bu süreçte paraoksonaz gen polimorfizminin rolünü açıklamayı amaçladık. Bu çalışmaya dahil edilen vakalar Şişli Etfal Eğitim ve Araştırma Hastanesi Plastik, Rekonstrüktif ve Cerrahi Kliniğine Ağustos 2004 ile Ocak 2006 arasında başvuran hastaların tıbbi kayıtlarından alındı. 50 sendromik olmayan yarık dudak ve damaklı hasta ve aileleri incelendi. Kan örnekleri EDTA’lı tüplere alındıktan sonra DNA, lökositlerin SDA amonyum asetat lizisi ile ekstraksiyonu ve etanol presipitasyonu ile hazırlandı. PON1 genotipleri daha önce yayınlanmış protokollere göre PCR uygulamasını takiben belirlendi. Furlong (1989) tarafından uygulanan yönteme göre serumda Paraoksonaz aktivitesi araştırıldı. Sendromik olmayan yarık dudak ve damaklı hastalarda ve kontrol gruplarında PON-1 192 gen polimorfizminin sıklığını araştırdık.

Sendromik olmayan yarık damak ve dudaklı hasta ve ailelerinde paraoksonaz-1 192 enzim polimorfizmi

Most orofacial clefts are nonsyndromic, isolated defects, and are classified into two groups: cleft lip (CL) with or without cleft palate and cleft palate (CP) only. Both are genetically complex traits, the genetic cause is stil elusive, it is genetically complex and enviromental factors are also responsible for the pathogenesis. Epithelial transformation to mesenchyme is an important event during the process of palatogenesis. Specifically, epithelial-mesenchymal transformation is thought to be critical for the disappearance of the seam and mesenchymal confluence. In palate formation, apoptosis is thought to facilitate adherence, or touching, of the opposing epithelium to form a seam. Apoptosis is important to sculpt the organelles in the body during development. We hypothesize that oxidative stress promotes epithelial cell apoptosis during palate formation. Oxidative stress occurs when the production of reactive oxygen species (ROS), including free radicals, exceeds the handling capability of intracellular antioxidant enzymes and extracellular antioxidant defenses. Excessive oxidative stress leads to peroxidative damage to cells, altered cellular function, and pathologic effects. Paraoxonase (PON) is a serum enzyme that is associated with antioxidant mechanism. We aim to determine the prevalance of the PON-1 192 polymorphisms in the patients and control groups. All cases included in this study are from the medical records of the Plastic, Reconstructive and Esthetic Clinic of Sisli Etfal Research and Training Hospital from August 2004 to January 2006. 50 nonsyndromic CL and CP cases and parent were analyzed. Blood specimens were collected in tubes containing EDTA, and DNA was prepared from leucoycte pellet by SDS lysis ammonium acetate extraction and ethanol precipitation. PON-1 genotypes were determined following PCR according to previously published protocols. Paraoxonase activities was measured according to Furlong et al. (1989). We evaluated the frequencies of polymorphisms of the PON1-192 gene in nonsyndromic cleft lip and cleft palate patients and in matched control subjects.

___

  • Adkins S, Gan KN, Mody M and La Du BN. Molecular basis for the polymorphic forms of human serum paraoxonase/arylesterase: glutamine or arginine at position 191, for the respective A or B allozymes. Am J Hum Genet. 52: 598-608, 1993.
  • Agarwal A, Saleh RA, Bedaiwy MA. Role of reactive oxygen species in the pathophysiology of human reproduction. Fertil Steril. 79: 829–843,2003.
  • Ağaçhan B.,Yılmaz H., Ergen A.,Karaali ZE, İsbir T. Paraoxonase (PON1) 55 and 192 polymorphism and its effects to oxidant-antioxidant system in turkish patients with type 2 diabetes mellitus. Physiol Res.54(3): 287-93, 2005.
  • Aviram M, Billecke S, sorenson R, Bisgaier C, Newton R, Rosenblat m, Erogul j, Hsu C, Dunlop C, La Du B: Paraoxonase Active Site required for protection against LDL oxidation involves its free sulfhydryl group and is different from that required for its Arylesterase/ Paraoxonase activities: Selective Action Of Human Paraoxonase Alloenzymes Q And R. Arterio-Scler Thromb Vasc Biol. 18: 1617-1624, 1998.
  • Blackburn S. Free radicals in perinatal and neonatal care, part 1: the basics. J Perinat Neonatal Nurs.19(4): 298-300, 2005.
  • Botto LD, Olney RS, Erickson JD: Vitamin supplements and the risk for congenital anomalies other than neural tube defects. Am J Med Genet. 125: 12-21, 2004.
  • Brunet, C.L., Sharpe, P.M., and Ferguson, M.W.J. Inhibition of TGF-3 (but not TGF-_1 or TGF-_2) activity prevents normal mouse embryonic palate fusion. Int. J. Dev. Biol. 39:345, 1995
  • Carmichael SL, Shaw GM, Yang W, et al. Maternal periconceptional alcohol consumption and risk for conotruncal heart defects. Birth Defects Res A Clin Mol Teratol. 67: 875-878,2003.
  • Costa LG, Li WF, Richter RJ, Shih DM, Lusis A, Furlong CE: The rol of paraoxonase (PON1) in detoxification of orgonophosphates and its human polymorphisms. Chem. Biol. Interact. 119-120: 429-438, 1999.
  • Cuervo, R.,Valencia, C., Chandraratna, R.A.S., and Covarrubias, L. Programmed cell death is required for palate shelf fusion and is regulated by retinoic acid. Dev. Biol. 245: 145,2002.
  • Das, S.K., Runnel, R.S., Smith, J. C., and Cohlx, H. H. Epidemiology of cleft lip and cleft palate in Mississippi.South. Med. J. 88: 437,1995.
  • Ferguson, M.W., and Honig, L.S. Epithelialmesenchymal interactions during vertebrate palatogenesis. In E. F. Zimmerman (Ed.), Current Topics in Developmental Biology, Vol. 19. Palate Development: Normal and Abnormal, Cellular and Molecular Aspects. New York: Academic Pres. 137-164, 1984.
  • Finnell RH, Shaw GM, Lammer EJ, Brandl KL, Carmichael SL, Rosenquist TH: Gene-nutrient interactions: importance of folates and retinoids during early embryogenesis. Toxicol ApplPharmacol 198:75-85, 2004.
  • Forrester MB, Merz RD. Descriptive epidemiology of oral clefts in a multiethnic population, Hawaii, 1986-2000. Cleft Palate Craniofac J; 41:622-628, 2004.
  • Furlong CE, Richter RJ, Seidel SL, Costa LG, Motulsky AG.Spectrophotometricassay for the enzymatic hydrolysis of the active metabolites of chlorpyrites and parathion by plasma paraoxonase/arylesterase. Anal Biochemistry; 180: 242-7, 1989.
  • Gorlin RJ, Cohen MM, Hennekam RCM. Syndromes of the head and neck. Oxford: Oxford University Press; 2001.
  • Little J, Cardy A, Munger RG: Tobacco smoking and oral clefts:a meta-analysis. Bull World Health Organ. 82:213-218, 2004.
  • Martinez-Alvarez, C., Tudela, C., Perez- Miguelsanz, J.,O’Kane, S., Puerta, J., and Ferguson, M. W. J. Medial edge epithelial cell fate during palatal fusion. Dev. Biol.220: 343, 2000
  • Matsunaga Y, Iguchi K, Nakajima Y, Koyama I, Miyazaki T, Inoue I. Lycated high density induces apoptosis of endothelial cells via a mithochondrial dysfunction. Biochem Biophys Res Commun; 287:714-720,2001.
  • Miller SA, Dykes DD, Polesky HS. Simples salting out procedure extracting DNA from human nucleated cells. Nucleic Acid Res. 16/3: 1215,1988.
  • Munger RG, Sauberlich HE, Corcoran C, Nepomuceno B,Daack-Hirsch S, Solon FS: Maternal vitamin B-6 and folate status and risk of oral cleft birth defects in the Philippines. Birth Defects Res A Clin Mol Teratol. 70:464-471, 2004.
  • Munger RG: Maternal nutrition and oral clefts. In Cleft Lip and Palate: from Origin to Treatment. Edited by Wyszynski DFE. Oxford University pres. 170-192, 2002.
  • Murray J. Gene/environment causes of cleft lip and/or palate. Clin Genet . 61:248-256, 2004.
  • Myatt L, Cui X. Oxidative stress in the placenta. Histochem Cell Biol.122:369–382, 2004.Cui X.Oxidat
  • Primo-Parmo SL, Sorenson RC, Teiber J, Du BNL; The Human Serum Paraoxonase/Aryesterase Gene (PON1) Is One Member of a Multigene Family. Genomics. 33:498-507, 1996.
  • Saito T, Cui XM, Yamamoto T, Shiomi N, Bringas Jr P, Shuler CF. Effect of N- nitrosonornicotine (NNN) on murine palatal fusion in vitro. Toxicology; 207:475-85, 2005.
  • Stanier P, Moore GE: Genetics of cleft lip and palate: syndromic Hum Mol Genet, 13:73-81,2004.
  • Vieira AR, Murray JC, Trembath D, et al. Studies of reduced folate carrier 1 (RFC1) A80G and 5,10-methylenetetrahydrofolate reductase (MTHFR) C677T polymorphisms with neural tube and orofacial cleft defects. Am J Med Genet A. 135:220-223, 2005.
  • Wyszynski DF. Cleft lip and palate: from origin to treatment. Oxford: Oxford University Press;2002.
  • Zeiger JS, Beaty TH, Liang KY. Oral clefts, maternal smoking, and TGFA:a meta-analysis of gene-environment interaction. Cleft Palate Craniofac J. 42:58-63, 2005.
  • Zeiger JS, Beaty TH:Gene-environment interaction and risk to oral clefts. In Cleft Lip and Palate: from Origin to Treatment. Edited by Wyszynski DFE. Oxford University pres. 283-289, 2004.