Biocontrol efficiency of Bacillus thuringiensis toxins against root-knot nematode, Meloidogyne incognita

Bacillus thuringiensis (Bt) tarafından üretilen toksin proteinleri tarımda en yaygın olarak kullanılan doğal böcek öldürücülerdendir. Vejetatif ve kristal toksinlerin parazitik nematodları kontrol etmek için potansiyel kullanımını araştırmak amacıyla, Bt toksinlerinin nematisidal etkilerini kök-budak nematoduna karşılaştırdık. Bt izolatının spor/kristal proteinlerinin (SCP) nematisidal etkileri Meloidogyne incognita nematoduna karşı in vitro olarak araştırılmıştır. Bt7N, BtDen, Bt18, BtK73, BtSotoveBt7 izolatlarının spor/kristal proteinleri %86-100 mortalite aralığıyla en yüksek nematisidal aktiviteyi göstermiştir. Ek olarak, en etkili izolatların (Bt7, Bt7N, BtSoto ve BtDen) amonyum sülfat eşik değeri fraksiyonu vejetatif kültürlerininin in vitro nematisidal etkileri araştırılmıştır. Bt7N ve Bt7’nin gözlenen mortaliteleri %80 amonyum sülfat eşik değeri için sırasıyla %100 ve %89.4 bulunmuştur. Her 4 izolatın kültür sıvısı, hücresiz süpernatantı ve hücre-pellet kalıntıları (Bt7, Bt7N, BtSoto ve BtDen) in vivo nematisidal aktiviteleri için domates bitkileri konak olarak kullanılarak değerlendirilmiştir. Sonuçlar Bt7N izolatının ham süspansiyonunun (CS) ve hücresiz süpernatantının (CFS) kontrolle karşılaştırıldığında yumurta kitlelerini sırasıyla %78 ve %77 ve yumurta sayısını da sırasıyla %84 ve %76 azalttığını göstermiştir.

Bacillus thuringiensis toksinlerinin kök-budak nematodu Meloidogyne incognita'ya karşı biyokontrol etkinliği

The toxin proteins produced by Bacillus thuringiensis (Bt) are the most broadly used natural insecticides in agriculture. To investigate the potential use of vegetative and crystal toxins to control parasitic nematodes, we studied the nematicidal effect of Bt toxins against root-knot nematode. Nematicidal effects of spore/crystal proteins (SCP) of ten Bt isolates were studied in vitro against Meloidogyne incognita nematode. The spore/crystal proteins of isolates Bt7N, BtDen, Bt18, BtK73, BtSoto and Bt7 showed the highest nematicidal activities, with the mortality range of 86-100%. In addition, ammonium sulfate cut-off fraction of vegetative cultures of the most potent isolates (Bt7, Bt7N, BtSoto and BtDen) was examined in vitro for their nematicidal effects. The observed mortalities of Bt7N and Bt7were 100 and 89.4% for 80% ammonium sulfate cut-off respectively. The culture fluid (CF), cell-free supernatant (CFS) and cell-pelleted residues (CP) of each of the four isolates (Bt7, Bt7N, BtSoto and BtDen) were evaluated for their nematicidal activities in vivo, using tomato plants as a host. The results demonstrate that both crude suspension (CS) and cellfree supernatant (CFS) of isolate Bt7N reduced the number of egg masses by 78% and 77% respectively, and number of eggs by 84% and 76% compared to control.

___

  • Addison JA. Persistence and non-target effects of Bacillus thuringiensis in soil: a review. Can. J. For. Res. 23: 2329-2342, 1993.
  • Asaka O and Shoda M. Biocontrol of Rhizoctonia solani Damping-off of tomato with Bacillus subtilis RB14. Appl. Environ. Microbiol. 62:4081-4085, 1996.
  • Ayoub SM. Plant nematology, an agriculture training aid. Nema. Aid. Publications, Sacramento, California. USA, pp195, 1980.
  • Borgonie G, Claeys M, Leyns F, Arnaut G and De Waele D. Effect of a nematicidal Bacillus thuringiensis strain on free-living nematodes. Characterization of the intoxication process. Fundam. Appl. Nematol. 19:523-528, 1996.
  • Bourgouin C, Delecluse A, Torre F and Szulmajster J. Transfer of the toxin protein genes of Bacillus sphaericus into Bacillus thuringiensis subsp. israelensis and their expression. Appl. Environ. Microbiol. 56:340-344, 1990.
  • Deviddas P and Rehberger LA. The effects of exotoxin (Thuringiensin) from Bacillus thuringiensis on Meloidogyne incognita and Caenorhabditis elegans. Plant Soil. 145: 115-120, 1992.
  • Englard S and Seifter S. Precipitation techniques. Methods Enzymol. 182: 285-300, 1990.
  • Griffitts JS, Huffman DL, Whitacre J L, Barrows B D, Marroquin L D, Muller R, Brown JR, Hannet T and Esko JD. Resistance to a bacterial toxin is mediated by removal of a conserved glycosylation pathway required for toxin-host interactions. J. Biol. Chem. 278: 45594-45602,2003.
  • Griffitts JS, Whitacre JL, Stevens DE and Aroian RV. Bacillus thuringiensis toxin resistance from loss of a putative carbohydrate-modifying enzyme. Science 293:860-864, 2001
  • Hala KH, Hajaij M and Charles JF. Characterization of Bacillus thuringiensis ser. jordanica (serotype H71), a novel serovariety isolated in Jordan. Curr. Microbiol. 47: 26-31, 2003.
  • Hofmann C, Van Derbruggen H, Hofte H, Van Rie J and Jansens S. Specificity of Bacillus thuringiensis δ-endotoxins is correlated with the presence of high affinity binding sites in the brush border membrane of target insect midguts. Proc. Natl. Acad. Sci. USA 85: 7844-48, 1988.
  • Huffman DL, Bischof LJ, Griffitts JS, Aroian RV and Sebo P. Pore worms: using Caenorhabditis elegans to study how bacterial toxins interact with their target host. Int. J. Med. Microbiol. 293: 599-607, 2004.
  • Hussey RS and Barker KR. A comparison of methods of collecting inocula of Meloidogyne spp. including a new technique. Plant Dis. Rep. 57:1925-1928, 1973.
  • Kotze AC, O'grady J,Gough JM, Pearson R, Bagnall NH, Kemp DH and Akhurst RJ. Toxicity of Bacillus thuringiensis to parasitic and freeliving life-stages of nematode parasites of livestock. Int. J. Parasitol. 35:1013-1022, 2005.
  • Lecadet MM, Chaufaux J, Ribier J and Lereclus D. Construction of novel Bacillus thuringiensis strain with different insecticidal activities by transduction and transformation. Appl. Environ. Microbiol. 58: 840–849, 1991.
  • Laemmli UK. Cleavage of structure proteins during the assembly of the head of bacteriophage T4. Nature. 227: 680-685, 1970
  • Lopez-Arellano ME, Crespo JF, Gives PM, Parra AB, Rodríguez DH, Hernandez EL, Prat VMV, Uriostegui PV and De-la-Parra AB. In vitro lethal activity of Bacillus thuringiensis toxins against Haemonchus contortus eggs and infective larvae. Int. J. Nematol. 12: 66-72,2002.
  • Menn JJ. Biopesticides- has their time come? J. Environ. Sci. Health; Part B- Pesticides Food Contaminants and Agricultural Wastes 31: 383-389, 1996.
  • Miller JH. Experiments in Molecular Genetics, pp. 431-433, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1972.
  • Mozgovaya IN, Byzov BA, Ryabchenko NF, Romanenko, N D and Zvyagintsev DG. Nematicidal effects of the entomopathogenic bacteria Bacillus thuringiensis in soil. Pedobiologia. 46: 558-572, 2002.
  • PIP, Pesticide Information profile, Extension Toxicology Network (EXTONET), Oregon State University, 1996.
  • Prasad, SSV, Tilak KVBR and Gollakota RG. Role of Bacillus thuringiensis var. thuringiensis on the larval survivability and egg hatching of Meloidogyne. spp. the causative agent of root-knot disease. J. Invertebr. Pathol. 20:377-378, 1972.
  • Racke J and Sikora RA. Influence of plant healthpromoting rhizobacteria Agrobacterium radiobacter and Bacillus sphaericus on Globodera pallida root infection of potato and subsequent plant growth. J Phytopath [Phytopathologische Zeitschrift] 134, 198-208, 1992a.
  • Racke J and Sikora RA. Isolation, formulation and antagonistic activity of rhizobacteria toward the potato cyst nematode Globodera pallida. Soil Biol. Biochem. 24: 521-526,1992b.
  • Rehberger DP. The effects of exotoxin (Thuringiensin) from Bacillus thuringiensis on Meloidogyne incognita and Caenorhabditis elegans. Plant Soil. 145:115-120, 1992.
  • Romeis J, Meissle M and Bigler F. Transgenic crops expressing Bacillus thuringiensis toxins and biological control. Nat. Biotechnol. 24:63–71, 2006.
  • SAS Institute. SAS/STAT User’s Guide. Release 6.03 Edition-6th edition. SAS institute Inc., North Carolina, Cary. Inc. pp.1028, 1988.
  • Siddiqui ZA and Mahmood I. Management of Meloidogyne incognita race 3 and Macrophomina phaseolina by fungus culture filtrates and Bacillus subtilis in chickpea. Fundam. Appl. Nematol. 18: 71-76, 1995.
  • Sikora RA and Fernandez E. Nematode parasites of vegetables. In: M. Luc, R.A. Sikora and J. Bridge, Editors, Plant-Parasitic Nematodes in Subtropical and Tropical Agriculture, CABI Publishing, Wallingford, UK, pp. 319-392,2005.
  • Stepanova TV, Baryshnikova ZF, Chirkov MV, Zhimerikin BN and Ryabchenko N.F. Bacillus thuringiensis strains exhibiting multiple activity against a wide range of insects. Biotechnologiya. 12:17-22, 1996.
  • Wei JZ, Hale k, Carta L and Platzer E, Wong C, Fang S., Aroian R.V. Bacillus thuringiensis crystal proteins that target nematodes. Proc. Natl. Acad. Sci. USA 100: 2760-2765, 2003.
  • Yamagata H, Adachi T, Tsuboi A, Takao M, Sasaki T, Tsukagoshi N and Udaka S. Cloning and characterization of the 5' region of the cell wall protein gene operon in Bacillus brevis 47. J. Bacteriol. 169: 1239-1245, 1987.
  • Yamamoto T and Powell G. Bacillus thuringenesis crystal proteins: recent advances in understanding its insecticidal activity. In: Kim L. (ed), Advanced Engineering pesticides. Marcel Dekker, Inc. NY pp.3-42, 1993.
  • Zuckerman BM, Dicklow MB and Acosta N. Astrain of Bacillus thuringiensis for the control of plant parasitic nematodes. Biocontrol Sci. Techn. 3: 41-46, 1993.