The biochemical basis of insecticide resistance and determination of esterase enzyme patterns by using page in field collected populations of Drosophila melanogaster from Muğla province of Turkey

Biyokimyasal ve moleküler biyoloji teknikleri, doğal populasyonlarda, potansiyel veya gelişmekte olan direnç mekanizmaları hakkında çok spesifik bilgiler sağlamaktadır. Bu araştırmada, Muğla ve ilçelerinden toplanan Drosophila melanogaster populasyonlarında glutatyon-S-transferaz (GST), yüzde kalan asetilkolin esteraz (AChE) ve genel esteraz aktiviteleri ölçülmüştür. Bununla birlikte poliakrilamid jel elektroforezi (PAGE) yöntemi kullanılarak örneklerdeki esteraz enzim profilleri belirlenmiştir. Yüzde kalan asetilkolin esteraz enzim aktivitesi incelenen örneklerde duyarlı soya göre yüksek bulunmuştur, a ve (3-naftil asetatın substrat olarak kullanılması ile toplam 21 esteraz bandı elde edilmiştir, bu bantların 18 tanesi a esteraz, iki tanesi (3 esteraz ve bir tanesi ise a/B esteraz olarak sınıflandırılmıştır.

Muğla ve ilçelerine ait Drosophila melanogaster populasyonlarında insektisit direncinin biyokimyasal temellerinin ve esteraz enzim profilinin PAGE yšntemi kullanılarak belirlenmesi

Biochemical and molecular biology methods provide more specific information about the resistance potential or the development of resistance in field populations of living organisms. In this research, the enzymatic activities of Glutathione-S-transferase (GST), percent remaining acetylcholinesterase (AChE) and general esterase were measured in Drosophila melanogaster populations collected from different towns of Muğla Province. Furthermore, esterase enzyme patterns of these populations were determined by using polyacrylamide gel electrophoresis (PAGE). Percent remaining activities of AChE were found to be significantly higher in all strains compared to the activities of the susceptible one. Twenty one different esterase bands were detected when a- and (3-naphtyl acetate were used as substrates and the bands were classified as 18 a-esterases, 2 (3-esterases and 1 a/(3 esterase.

___

  • Ahmed S and Wilkins RM. Studies on some enzymes involved in insecticide resistance in fenitrothion resistant and -susceptible strains of Musca domestica L.(Dipt, Muscidae). J Appl Entomol. 126 (9): 510-516, 2002.
  • Bradford MM. A rapid and sensitive method for the quantisation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 72: 248-254, 1976.
  • Campbell PM, Yen JL and Masoumi A. Cross-resistance patterns among Lucilia cuprina (Diptera: Calliphoridae) resistant to organophosphorus insecticides. J Economic Entomol. 91(2): 367-375, 1998.
  • Charpentier A and Fournier D. Levels of total acetylcholinesterase in Drosophila melanogaster in relation to insecticide resistance. Pesticide Biochemistry and Physiology. 70(2): 100-107, 2001.
  • Chen Z, Newcomb R, Forbes E, McKenzie J and Batterham P. The acetylcholinesterase gene and organophosphorus resistance in the Australian sheep blowfly, Lucilia cuprina. Insect Biochem and Mol Bio. 31: 805-816, 2001.
  • Claudianos C, Russell RJ and Oakeshott JG. The same amino acid substitution in orthologous esterases confers organophosphate resistance on the house fly and a blowfly. Insect Biochemistry and Molecular Biology. 29(8): 675-686, 1999.
  • Enayati AA, Ranson H and Hemingway J. Insect glutathione transferases and insecticide resistance. Insect Molecular Biology. 14(1): 3-8, 2005.
  • Feyereisen R. Molecular biology of insecticide resistance. Toxicology Letters. 82(3): 83-90, 1995.
  • Field LM and Devonshire AL. Evidence that the E4 and FE4 esterase genes responsible for insecticide resistance in the aphid Myzus persicae (Sulzer) are part of a gene family. Biochemical Journal. 330: 169-173, 1998.
  • Guillemaud T, Makate N, Raymond M, Hirst B and Callaghan A. Esterase gene amplification in Culex pipiens. Insect Molecular Biology. 6(4): 319-327, 1997.
  • Habig WH, Pabst MJ and Jakobi BW. Glutathione-S- Transferases. J Biol Chem. 249: 7130-7139, 1974.
  • Han Z, Graham D, Moores ID and Alan L. Devonshire association between biochemical markers and insecticide resistance in the cotton Aphid, Aphis gossypii Glover. Pesticide Biochemistry and Physiology. 62: 164-171, 1998.
  • Healy MJ, Dumancic MM and Oakeshott JG. Biochemical and physiological studies of soluble esterases from Drosophila melanogaster. Biochem Genet. 29: 365-388, 1991.
  • Hemingway J. The Molecular basis of two contrasting metabolic mechanisms of insecticide resistance. Insect Biochem Mol Biol. 30: 1009-1015, 2000.
  • Kozaki T, Shono T, Tomita T and Kono Y. Fenitroxon insensitive acetylcholinesterases of the housefly, Musca domestica, associated with point mutations. Insect Biochem Mol Biol. 31: 991-997, 2001.
  • Kristensen M. Glutathion-S-transferase and insecticide resistance in laboratory strains and field populations of Musca domestica. J Econ Entomol. 98: 1341-1351,2005.
  • Menozzi P, Shi MA, Lougarre A, Tang, Z, Fournier, D,Mutations of acetylcholinesterase which confer insecticide resistance in Drosophila melanogaster populations. BMC Evolutionary Biology. 4 Art, No. 4, 2004.
  • Miyo T, Akai S and Oguma Y. Seasonal fluctuation in susceptibility to insecticides within natural populations of Drosophila melanogaster. empirical observations of fitness costs of insecticide resistance. Genes and Genetic Systems. 75 (2): 97-104, 2000.
  • Miyo T, Takamori H, Kono Y and Oguma, Y. Genetic variation and correlations among responses to five insecticides within natural populations of Drosophila melanogaster (Diptera: Drosophilidae). Journal of Economic Entomology. 94 (1): 223-232, 2001
  • Moores, GD, Denholm I and Devonshire AL. A microtiter plate assay for characterizing insensitive acetylcholinesterase genotypes of insecticide resistant insects. Bulletin Entomol Res. 78: 537-544, 1988.
  • Mutero A, Pralavorio M, Bride JM and Fournier D. Resistance-associated point mutations in insecticide- insensitive acetylcholinesterase. PNAS. 91: 5922-5926, 1994.
  • Nascimento AP and Bicudo HEMD. Esterase patterns and phylogenetic relationships of Drosophila species in the saltans subgroup (saltans group). Genetica. 114(1): 41- 51,2002.
  • Oakeshott, JG, van Papenrecht EA, Boyce TM, Russell RJ and Healy MJ. Evolutionary genetics of Drosophila esterases. Genetica. 90: 239-268, 1993.
  • Shi MA, Lougarre A, Alies C, Fremaux I, Tang ZH, Stojan J and Fournier D. Acetylcholinesterase alterations reveal the fitness cost of mutations conferring insecticide resistance. BMC Evolutionary Biology. 4 Art, No. 5, 2004.
  • Sousa-Polezzi RD and Bicudo HEMD. Genetic variation along time in a brazilian population of Aedes aegypti (Diptera: Culicidae) detected by changes in the esterase patterns. Genetica. 125(1): 43-53, 2005.
  • Staal GB. Insect growth regulators with juvenile-hornione activity. Annual Review of Entomology. 20: 417, 1975.
  • Taskin V and Kence M. The genetic basis of malathion resistance in housefly {Musca domestica L) strains from Turkey. Russian Journal of Genetics. 40: 1475-1482, 2004.
  • Wilson TG. Resistance of Drosophila to toxins. Annual Review of Entomology. 46: 545-571, 2001.
  • Zar JH. Biostatistical analysis. Prentice-Hall Inc. Simon & Schuster /A Viacom Company. Upper Saddle River, New lersey, USA. 1999.
  • Zhou HA and Syvanen M. A complex glutathione-S- transferase gene family in the housefly Musca domestica. Mol Gen Genet. 256: 187-194, 1997.
  • Zhu KY and He F. Elevated esterases exhibiting arylesterase-like characteristics in an organophosphate-resistant clone of the greenbug, Schizaphis graminum (Homoptera: aphididae). Pest Biochem Physiol. 67: 155-