A general view: Structure and function of the subinits of E. coli RNA polymerase

DNA-bağımlı RNA polimerazlar doğada yaygın olarak bulunurlar. En iyi karakterize edilen polimerazlardan biri olan E. coli RNA polimeraz iki ana yapıdan oluşur, $α_2ββ$ ' stokiyometrisi ile çekirdek enzim ve çekirdek enzime σ alt biriminin eklenmesi ile oluşan holoenzim. E. coliRNA polimeraz transkripsiyonda önemli bir rol oynar. Çekirdek enzim transkripsiyonun uzaması ve sonlanmasını katalizlerken, transkripsiyonun başlaması için çekirdek enzime σ alt biriminin eklenmesi gerekmektedir. Bu çok altbirimli enzimin üç boyutlu yapısı el ayasına benzer bir yapı gösterir. Elektron mikroskobu kullanarak Tichelar ve Heel (1990)’in önerdikleri modele göre β ve β' alt birimleri birlikte V şeklinde yapı oluşturmakta ve α dimeri kısa uçlarla birleşmektedir, σ ise çekirdeğin konkav kısmında dimere komşu olarak yer almaktadır. Bu derlemede çeşitli araştırmalar ve derlemeler baz alınarak E. coliDNA-bağımlı RNA polimerazın alt birimlerinin yapıları ve fonksiyonları sunulmuştur. E. coli RNA polimerazın üzerinde yapılan biyokimyasal ve genetik incelemelere dayanılarak alt birimleri üzerinde genetik bir yürüyüş özetlenmiştir.

Genel bakış: E. coli RNA polimerazın alt birimlerinin yapıları ve fonksiyonları

The DNA-dependent RNA polymerases are widespread throughout nature. E. coli RNA polymerase, one of the most well characterized polymerase, consists of two major forms, core enzyme with subunit stoichiometry of α2ββ' and holoenzyme which contains an additional σ subunit to core enzyme. E. coli RNA polymerase plays a central role in transcription. While the core enzyme catalyses the elongation and termination of transcription, to initiate core enzyme needs to combine with σ subunit. The three dimensional structure of this multimeric enzyme revealed a thumb-like projection. Using the electron microscope, Tichelar and Heel (1990) proposed a model that is in agreement with both β and β' together constituting a V-like structure and α dimer associates at the short ends, while σ is positioned within the concave side of the core, next to the dimer. In this review, the structure and related functions of the subunits of E. coli DNA-dependent RNA polymerase is presented based on several researches and reviews. Considering biochemical and genetic studies on the RNA polymerase of E. coli, a genetic walk on the subunits is summarized.

___

  • Attey A, Belyaeva T, Savery N, Hoggett J, Fujita N, Ishihama A and Busby S. Interactions between the cyclic AMP receptor protein and the α subunit of RNA polymerase at the E. coli galactose operon P1 promoter. Nucl Acid Res. 22: 4375-4380, 1994.
  • Borukhov S, Lee J and Goldfarb A. Mapping of a contact for the RNA 3' terminus in the largest subunit of RNA polymerase. J Biol Chem. 266: 23932-23935, 1991.
  • Brennan RT and Matthews BW. The helix-turn-helix DNA binding motif. J Biol Chem. 264: 1903-1906, 1989.
  • Burgess RR. Separation and characterization of the subunits of RNA polymerase. J Biol Chem. 244: 2168-2176, 1969.
  • Busby S, West D, Lawes M, Webster C, Ishihama A and Kolb A. Transcription activation by the E. coli cyclic- amp protein-receptors bound in tandem at promoters can interact synergistically. J Mol Biol. 241: 341-352, 1994.
  • Büyükuslu N, Trigwell SM, Lim PP, Fujita N, Ishihama A, Ralphs N and Glass RE. Physical mapping of a collection of MaeI-generating mutations in the β gene of E. coli RNA polymerase and the functional effect of internal deletions constructed through their manipulation. Genes and Function 1: 119-129, 1997.
  • Callaci S, Heyduk E and Heyduk T. Conformational changes of E. coli RNA polymerase σ70 factor induced by binding to the core enzyme. J Biol Chem. 273: 329995-33001, 1998.
  • Callaci S, Heyduk E and Heyduk T. Core RNA polymerase from E. coli induces a major change in the domain arrangement of the σ70 subunit. Molecular Cell. 3: 229- 238, 1999.
  • Cannon W, Claveriemartin F, Austin S and Buck M. Identification of a DNA-contacting surface in the transcription factor σ54. Mol Microbiol. 11: 227-236, 1994.
  • Clerget M, Jin DJ and Weisber RA. A zinc-binding region in the β' subunit of RNA polymerase is involved in antitermination of early transcription of phage HK022. J Mol Biol. 248: 768-780, 1995.
  • Coppard JR and Merrick MJ. Casette mutagenesis implicates a helix-turn-helix motif in promoter recognition by the novel RNA-polymerase σ-factor σ54. Mol Microbiol. 5: 1309-1317, 1991.
  • Cromie K, Ahmad K, Malik T, Büyükuslu N and Glass RE. Trans-dominant mutations in the 3'-terminal region of the rpoB gene define highly conserved, essential residues in the β subunit of RNA polymerase: the GEME motif. Genes to Cells. 4: 145-159, 1999.
  • Daniels D, Zuber R and Losick R. Two amino acids in an RNA polymerase σ factor involved in the recognition of adjacent base pairs in the –10 region of a cognate promoter. P roc Nat Acad Sci. USA 87: 8075-8079, 1990.
  • Darst SA, Edwards AM and Kornberg RD. Three- dimensional structure of E. coli RNA polymerase holoenzyme determined by electron crystallography. Nature. 340: 730-732, 1989.
  • Dombroski AJ, Walter WA, Record MT, Jr. Siegele DA and Gross CA. Polypeptides containing highly conserved regions of transcription initiation factor sigma 70 exhibit specificity of binding to promoter DNA. Cell. 70: 501-512, 1992.
  • Dombroski AJ, Walter WA and Gross CA. Amino-terminal amino acids modulate sigma-factor DNA-binding activity. Genes Dev. 7: 2446-2455, 1993.
  • Fukuda R and Ishihama A. Subunits of RNA polymerase in function and structure. V. Maturation in vitro of core enzyme from E. coli. J Mol Biol. 87: 523-540, 1974.
  • Glass RE, Honda A and Ishihama A. Genetic studies on the β subunit of E. coli RNA polymerase. IX The role of the carboxy-terminus in enzyme assembly. Mol Gen Genet. 203: 492-495, 1986.
  • Glass RE, Ralphs NT, Fujita N and Ishihama A. Assembly of amber fragments of the β subunit of E. coli RNA polymerase. Eur J Biochem. 176: 403-407, 1988.
  • Gralla JD. Transcriptional control-lessons from an E. coli promoter data base. Cell. 66: 415-418, 1991.
  • Gribskov M and Burgess RR. σ factors from E. coli, B. subtilis, phage SP01 and phage T4 are homologous proteins. Nucl Acid Res. 14: 6745-6763, 1986.
  • Gusarov I and Nudler E. The mechanism of intrinsic transcription termination. Mol Cell. 3: 495-504, 1999.
  • Halling SM, Burtis KC and Doi RH. β' subunit of bacterial RNA polymerase is responsible for streptolydigin resistance in Bacillus subtilis. Nature. 272: 827-842, 1978.
  • Hayward RS, Igarashi K and Ishihama A. Functional specialization within the α subunit of E. coli RNA polymerase. J Mol Biol. 221: 23-29, 1991.
  • Heisler LM, Suzuki H, Landick R and Gross CA. Four contiguous amino-acids define the target for streptolydigin resistance in the β subunit of E. coli RNA polymerase. J Biol Chem. 268: 25369-25375, 1993.
  • Hekmetpanah DS and Young RA. Mutations in a conserved region of RNA polymerase II influence the accuracy of mRNA start site selection. Mol Cell Biol. 11: 5781-5791, 1991.
  • Helmann JD and Chamberlin MJ. Structure and function of bacterial σ factors. Ann Rev Biochem. 57: 839-872, 1988.
  • Honore NT, Bergh S, Chanteau S, Doucet-Populaire F, Eiglmeier K, Garnier T, Geroges C, Lanois P, Limpaipoon T, Newton S, Niang K, Portillo P, Ramesh GR, Reddi P, Ridel PR, Sittisombut N, Wu-Hunter S and Cole ST. Nucleotide sequence of the first cosmid from the Mycobacterium leprae genome project: Structure and function of the Rif-Str regions. Mol Microbiol. 7: 207-214,1993.
  • Hu JC and Gross CA. Marker rescue with plasmids bearing deletions in rpoD identifies a dispensible part of E. coli σ factor. Mol Gen Genet. 199: 7-13, 1983.
  • Igarashi K, Fujita N and Ishihama A. Sequence analyses of two temperature-sensitive mutations in the α subunit gene (rpoB) of E. coli RNA polymerase. Nucl Acid Res. 18: 5945-5948, 1990.
  • Igarashi K, Hanamura A, Makino K, Aiba H, Mizuno T, Nakata A and Ishihama A. Functional map of the α subunit of E. coli RNA polymerase: Two modes of transcription activation by positive factors. P roc Natl Acad Sci. USA 88: 8958-8962, 1991.
  • Igarashi K and Ishihama A. Bipartite functional map of the E. coli RNA polymerase α subunit: Involvement of the C-terminal region in transcription activation by cAMP-CRP. Cell. 65: 1015-1022, 1991.
  • Ishihama A. Functional Modulation of Escherichia coli RNA polymerase. Annu Rev Microbiol. 54: 499-518, 2000.
  • Ishihama A, Shimamoto N, Aiba H, Kawakami K, Nashimoto H, Tsugawa A and Uchida N. Temperature- sensitive mutations in the α subunit gene of E. coli RNA polymerase. J Mol Biol. 137: 137-150, 1980.
  • Ito K, Egawa K and Nakamura Y. Genetic interaction between the β' subunit of RNA polymerase and the arginine-rich domain of E. coli nusA protein. J Bacteriol. 173: 1492-1501, 1991.
  • Iwabe N, Kuma KK, Kishino H, Hasegawa M and Miyata T. Evolution of RNA polymerases and branching patterns of the three major groups of archaebacteria. J Mol Evol. 32: 70-78, 1991.
  • Jin DJ. Slippage synthesis at the galp2 promoter of E. coli and regulation by UTP concentration and cAMP-center-dot-cAMP protein. J Biol Chem. 269: 17221-17227, 1994.
  • Jin DJ and Gross CA. RpoB8, a rifampicin-resistant termination-proficient RNA polymerase, has an increased Km for purine nucleotides during transcription elongation. J Biol Chem. 266: 11178-14485, 1991.
  • Jin DJ and Gross CA. Three rpoBC mutations that suppress the termination defects of rho mutants also affect the functions of nusA mutants. Mol Gen Genet. 216: 269-275, 1989.
  • Jin DJ and Gross CA. Mapping and sequencing of mutations in the E. coli rpoB gene led to rifampicin resistance. J Mol Biol. 202: 45-48, 1988.
  • Jin R, Sharif KA and Krakow JS. Evidence for contact between the cyclic AMP receptor protein and the σ70 subunit of E. coli RNA polymerase. J Biol Chem. 270: 19231-19216, 1995.
  • Jones CH and Moran CP. Mutant σ factor blocks transition between promoter binding and initiation of transcription. P roc Nat Acad Sci. USA 89: 1958-1962, 1992.
  • Kashlev M, Lee J, Zalenskaya K, Nikivorov V and Goldfarb A. Blocking of the initiation to elongation transition by a transdominant RNA polymerase mutation. Science. 1006-1009, 1990
  • Kashlev M, Martin E, Polyakov A, Severinov K and Nikiforov A. Histidine-tagged RNA-polymerase-dissection of the transcription cycle using immobilized enzyme. Gene. 130: 9-14, 1993.
  • Kawakami K and Ishihama A. Defective assembly of ribonucleic acid polymerase subunits in a temperature-sensitive α subunit mutant of E. coli. Biochem. 19: 3491-3495, 1980.
  • Khan D and Ditta G. Molecular structure of FixJ: Homology of the transcriptional activator domain with the –35 binding domain of σ factors. Mol Microbiol. 5: 987-997, 1991.
  • Kimura M, Fujita N and Ishihama A. Functional map of the α subunit of E. coli RNA polymerase-deletion analyses of the amino-terminal assembly. J Mol Biol. 242: 107-115, 1994.
  • Kimura M and Ishihama A. Functional map of the α subunit of E. coli RNA polymerase-insertion analyses of the amino-terminal assembly. J Mol Biol. 248: 756-767, 1995.
  • Kirkegaard K, Buc H, Spassky A and Wang JC. Mapping of single-stranded regions in duplex DNA at the sequence level: single-strand-specific cytosine methylation in RNA polymerase-promoter complexes. P roc Natl Acad Sci. USA 80: 2544-2548, 1983.
  • Kumar A, Grimes B, Fujita N, Makino K, Malloch RA, Hayward RS and Ishihama A. Role of the σ70 subunit of E. coli RNA polymerase in transcription activation. J Mol Biol. 235: 405-413, 1994.
  • Krummel B and Chamberlin MJ. Structural analysis of ternary complexes of E. coli RNA polymerase: deoxyribonuclease I footprinting of defined complexes. J Mol Biol. 225: 239-250, 1992.
  • Landick R, Stewart J and Lee DN. Amino acid changes in conserved regions of the β subunit of E. coli RNA polymerase alter transcription pausing and termination. Genes Dev. 4: 1623-1636, 1990.
  • Lee J and Goldfarb A. lac repressor acts by modifying the initial transcribing complex so that it cannot leave the promoter. Cell. 66: 793-798, 1991.
  • Lee HS, Ishihama A and Kustu S. The C-terminus of the a-subunit of RNA-polymerase is not essential for transcriptional activation of σ54 holoenzyme. J Bacteriol. 175: 2479-2582, 1993.
  • Lesley SA and Burgess RR. Characterisation of the E. coli transcription factor σ70: localisation of a region involved in the interaction with core RNA polymerase. Biochem. 28: 7728-7734, 1989.
  • Lisitsyn NA, Sverdlov ED, Moiseyeva EP, Danilevskaya ON and Nikiforov VG. Mutation to rifampicin resistance at the beginning of the RNA polymerase β subunit gene in E. coli. Mol Gen Genet. 196: 173-174, 1984.
  • Lonetto M, Gribskov M and Gross C. The σ70 family: Sequence conservation and evolutionary relationships. J Bacteriol. 174: 3843-3849, 1992.
  • Lou J and Krakow JS. Characterization and epitope mapping of monoclonal antibodies directed against the β' subunit of Escherichia coli RNA polymerase. J Mol Chem. 267: 18175-18181, 1992.
  • Makino K, Amemura M, Kim SK, Nakata A and Shinagawa H. Role of the σ70 subunit of E. coli RNA polymerase in transcription activation by activator protein phoB in E. coli. Genes Dev. 7: 149-160, 1993.
  • Malik T, Ahmad K, Büyükuslu N, Cromie K, and Glass RE. Intragenic suppression of trans-dominant lethal substitutions in the conserved GEME motif of the β subunit of RNA polymerase: evidence for functional cooperativity within the C-terminus. Genes to Cells. 4: 501-515, 1999.
  • Merrick M and Chambers S. The helix-turn-helix motif of σ54 is involved in recognition of the –13 promoter element. J Bacterial. 174: 7221-7226, 1992.
  • Merrick M, Gibbins J and Toukdarian A. The nucleotide sequence of the σ factor gene ntr (rpoN) of Azobacter vinelandii: analysis of conserved sequences in NtrA proteins. Mol Gen Genet. 210: 323-330, 1987.
  • Miller LP, Crawford JT and Shinnick TM. The rpoB gene of mycobacterium-tuberculosis. Antimicrobial Agents and Chemotherapy. 38: 805-811, 1994.
  • Mukherjee K and Chatterji D. Alteration in template recognition by Escherichia coli RNA polymerase lacking the ω subunit: A mechanistic analysis through gel retardation and foot-printing studies. J Bio Sci. 24: 453-461, 1999
  • Mukherjee K, Nagai H, Shimamoto N and Chatterji D. GroEL is involved in activation of E. coli RNA polymerase devoid of σ subunit in vivo. Eur J Biochem. 266: 228-235, 1999.
  • Murakami KS, Masuda S and Darst S. Structural basis of transcription initiation: RNA polymerase holoenzyme at 4Å resolution. Science. 296(5571): 1280-1284, 2002.
  • Mustaev A, Kashlev M, Polyakov J, Lebedev A, Zalenskataya K, Grachev M, Goldfarb A and Nikiforov V. Mapping of the priming substrate contacts in the active-centre of E. coli RNA polymerase. J Biol Chem. 266: 23927-23931, 1991.
  • Mustaev A, Kashlev M, Zaychikov E, Grachev M, and Goldfarb A. Active-center rearrangement in RNA polymerase initiation. J Biol Chem. 268: 19185-19187, 1993.
  • Mustaev A, Zaychikov E, Severinov K, Kashlev M, Polyakov A, Nikiforov V and Goldfarb A. Topology of the RNA-polymerase active center probed by chimeric rifampicin-nucleotide compounds. P roc Natl Acad Sci. USA 91: 12036-12040, 1994.
  • Naryshkina T, Mustaev A, Darst SA and Severinov K. The β' subunit of E. coli RNA polymerase is not required for interaction with initiating nucleotide but is necessary for interaction with rifampicin. J Biol Chem. 276: 13308-13313, 2001.
  • Nene V and Glass RE. Genetic studies on the β subunit of E. coli RNA polymerase IV Structure-function correlates. Mol Gen Genet. 194: 166-172, 1984.
  • Ovchinnikov YA, Monastyrskaya GS, Guriev VV, Chertov OY, Modyanov NN, Grinkevich VA, Makarova IA, Marchenko TV, Polovnikova IN, Lipkin VM and Sverdlov ED. The primary structure of E. coli RNA polymerase nucleotide-sequence of the rpoB gene and amino acid sequence of the subunit. Eur J Biochem. 116: 621-629, 1981.
  • Ovchinnikov YA, Monastyrskaya GS, Guriev SO, Kalinina NF, Sverdlov ED, Gragerov AI, Bass IA, Kiver IF, Moiseyeva EP, Igumnov VN, Mindlin SZ, Nikiforov VG and Khesin RB. RNA polymerase rifampicin resistance mutations in E. coli: Sequence changes and dominance. Mol Gen Genet. 190: 344-348, 1983.
  • Ovchinnikov YA, Monastryskaya GS, Gubanov W, Guryev SO, Salomanita IS, Shuvaeva TM, Lipkin VM and Sverdlov ED. The primary structure of E. coli RNA polymerase. Nucleotide sequence of the rpoC gene and amino acid sequence of the b' subunit. Nucl Acid Res. 10: 4035-4044, 1982.
  • Panny SR, Heil A, Mazus B, Palm P, Zillig W, Mindlin SZ. Ilyina TS and Khesin RB. A temperature sensitive mutation of the β' subunit of DNA-dependent RNA polymerase from E. coli T116. FEBS letter. 48: 241-245, 1974.
  • Petersen SK and Flemming GH. A missense mutation in the rpoC gene affects chromosomal replication control in E. coli. J Bacteriol. 173: 5200-5206, 1991.
  • Polyakov A, Nikiforov V and Goldfarb A. Disruption of substrate binding site in E. coli RNA polymerase by lethal alanine substitutions in carboxy terminal domain of the β subunit. FEBS letter. 444: 189-194, 1999.
  • Polyakov A, Severinova E and Darst SA. 3-dimensional structure of E. coli core RNA-polymerase-promoter binding and elongation conformations of the enzyme. Cell. 83: 365-373, 1995.
  • Popham DL, Szeto D, Keener J and Kustu S. Function of a bacterial activator protein that binds to transcriptional enhancers. Science. 243: 629-635, 1989.
  • Ross W, Gosink KK, Salomon J, Igarashi K, Zou C, Ishihama A, Severinov K and Gourse RL. A third recognition element in bacterial promoters-DNA- binding by α subunit of RNA polymerase. Science. 262: 1407-1413, 1993.
  • Sasse-Dwight σ and Gralla JD. Role of eukaryotic-type functional domains found in the prokaryotic enhancer receptor factor σ54. Cell 62: 945-954, 1990.
  • Severinov K, Fenyo D, Severinova E, Mustaev A, Chait BT and Goldfarb DS. The σ-subunit conserved region-3 is part of 5'-face of active-center of E. coli RNA-polymerase. J Biol Chem. 269: 20826-20828, 1994.
  • Severinov K, Mustaev A, Kashlev M, Borukhov S, Nikiforov V and Goldfarb A. Dissection of the β subunit in the E. coli RNA polymerase into domains by proteolytic cleavage. J Biol Chem. 267: 12813-12819, 1992.
  • Severinov K, Mustaev A, Severinov E, Kozlov M and Darst SA. The β subunit rif-cluster-I is only angstroms away from the active center of E. coli RNA-polymerase. J Biol Chem. 270: 29428-29432, 1995.
  • Severinov K, Soushko M, Goldfarb A and Nikiforov V. Rifampicin region revisited- new rifampicin-resistant and streptolydigin-resistant mutants in the β subunit of E. coli RNA polymerase. J Biol Chem. 268: 14820-14825, 1993.
  • Siebenlist U, Simpson R and Gilbert W. E. coli RNA polymerase interacts homologously with two different promoters. Cell. 20: 269-272, 1980.
  • Siegele DA, Hu JC, Walter WA and Gross CA. Altered promoter recognition by mutant forms of the σ70 subunit of E. coli RNA polymerase. J Mol Biol. 206: 591-603, 1989.
  • Sparkovski J and Das A. Simultaneous gain and loss of functions caused by a single amino acid substitution in the β subunit of E. coli RNA polymerase: Suppression of NusA and rho mutations and conditional lethality. Genetics. 130: 411-428, 1992.
  • Straiger S, Kunkel B, Kroos L, and Losick R. Chromosomal rearrangement generating a composite gene for a developmental σ factor. Science. 243: 507-512, 1989.
  • Straiger P, Parsot C, and Bouvier J. Two functional domains conserved in major and alternate bacterial σ factors. FEBS letters. 187: 11-15, 1985.
  • Squires CH, Defelice M, Wessler SR and Calvo JM. Physical characterisation of the ilvH1 operon of E. coli K12. J Bacteriol. 147: 797-804, 1981.
  • Sweetser D, Nonet M and Young RA. Prokaryotic and eukaryotic RNA polymerases have homologous core subunits. P roc Natl Acad Sci. USA 84: 1192-1196, 1987.
  • Tatti KM, Jones CH and Moran PC. Genetic evidence for interaction of σE with the spoIIID promoter in B. subtilis. J Bacteriol. 173: 7828-7833, 1991.
  • Thomas M and Glass RE. E. coli rpoA mutation which impairs transcription of positively regulated systems. Mol Microbiol. 5: 2719-2725, 1991.
  • Tichelar W and Heel MV. Characteristic views of E. coli RNA polymerase core enzyme in the scanning transmission electron microscope. J Structural Biol. 103: 180-184, 1990.
  • Toketo M and Ishihama A. Biosynthesis of RNA polymerase in E. coli IV. Accumulation of intermediates in mutants defective in the subunit assembly. J Mol Biol. 102: 297-310, 1976.
  • Vassylyev DG, Sekine S, Laptenko O, Lee J, Vassylyeva MN, Borukhov σ and Yokoyama S. Crystal structure of a bacterial RNA polymerase holoenzyme at 2.6Å resolution. Nature. 417: 712-719, 2002.
  • Waldburger C, Gardella T, Wang R and Suskind MM. Changes in conserved region 2 of E. coli σ70 affecting promoter recognition. J Mol Biol. 215: 267-276, 1990.
  • Weilbaecher R, Hebron C, Feng GH and Landick R. Termination-altering amino-acid substitutions in the β' subunit of Escherichia coli RNA-polymerase identify regions involved in RNA chain elongation. Genes Dev. 8: 2913-2927, 1994.
  • Wellman A and Meares CF. Footprint on the sigma protein: a re-examination. Biochem Biophys Res Comm. 177: 140-144, 1991.
  • Wigneshweraraj SR, Nechaev S, Severinov K and Buck M. The β subunit residues 186-433 and 436-445 are commonly used by σ54 and σ70 RNA polymerase holoenzyme for open promoter complex formation. J Mol Biol. 319: 1067-1083, 2002.
  • Zakharova N, Bass A, Arsenieva E, Nikiforov V and Severinov K. (submitted for publication). Mutations in and monoclonal antibody binding to evolutionary hypervariable region of E. coli RNA polymerase β' subunit inhibit transcript cleavage and transcript elongation. J Biol Chem. 2003.
  • Zillig W, Zechel K, Rabussay D, Schachner M, Sethi VS, Palm P, Heil A and Seifert W. On the role of different subunits of DNA-dependenet RNA polymerase from E. coli in the transcription process. Cold Spring Harbor Symp Quant Biol. 35: 47-58, 1970.
  • Zuber P, Healy J, Carter HL, Cutting S, Moran CP and Losick R. Mutation changing the specificity of an RNA polymerase σ factor. J Mol Biol. 206: 605-614, 1989.