Çevre Dostu Karbon Nano Fiberlerin Kimyasal Buhar Biriktirme Tekniği Kullanılarak Metanol ile Sentezlenmesi

Bu çalışma, NiO katalizör varlığında kimyasal buhar biriktirme (KBB) yöntemiyle günümüzde atık su arıtma, su ve hava arıtma sistemlerinde kullanılmaya başlanan karbon nano fiberin (KNF) sentezlenmesi üzerinde karbon kaynağı olarak methanolün uygunluğunun araştırılması amaçlamaktadır. Deneysel çalışmalar tüp fırında izotermal şartlar altında yapılmıştır. Karbon nanofiberlerin büyütülmesi için <100> yönelimli bir silikon levhalar daldırma kaplama yöntemi ile katalizör parçacıkları ile yüklenmiştir. Nikel oksit tozunun 1000 K'de izotermal olmayan ve izotermal koşullar altında indirgenme davranışı CNF sentezi çalışmalarından önce incelenmiştir. Nikel oksit tozunun izotermal olmayan koşullar altında indirgenme yüzdesi %82,03'tür. İzotermal koşullar altında 30 dakika boyunca indirgenme yüzdesi %78,03'tür. Elde edilen deneysel sonuç teorik değere (%78,57) çok yakındır. CNF sentez deneylerinde 1000-1100 K sıcaklıklarında metanolün zayıf termal parçalanma derecesi nedeniyle KNF oluşumu sağlanmadığı gözlemlenmiştir. Sentez sıcaklığının artmasıyla (1200 K) metanolün pirolizi artmış bu durumda KNF’ lerin sentezini teşvik etmiştir. Sentez sıcaklığı 1300 K olduğunda ise morofolojide 20 dakika izo termal şartlar altında yoğun KNF mikroyapısı oluştuğunu yapılan SEM analiz sonuçları ortaya koymuştur.

Synthesis of Environmentally Friendly Carbon Nano Fibers with Methanol by Using Chemical Vapor Deposition Technique

This study aims to investigate the suitability of methanol as a carbon source for the synthesis of carbon nanofibres (CNFs), currently used in wastewater, water, and air purification systems, by chemical vapor deposition (CVD) in the presence of NiO catalyst. Experimental studies were carried out in a tube furnace under isothermal conditions. Catalyst particles were loaded onto silicon wafers with <100> orientation by dip coating to grow CNFs. The reduction behavior of nickel oxide powder at 1000 K under non-isothermal and isothermal conditions was investigated before CNF synthesis studies. The percentage reduction of nickel oxide powder under non-isothermal conditions was 82.03%. The percentage reduction under isothermal conditions for 30 min was 78.03%. The experimental result obtained is very close to the theoretical value (78.57%). During CNF synthesis experiments, it was observed that CNF formation was not achieved at temperatures of 1000 - 1100 K due to the poor thermal decomposition of methanol. Pyrolysis of methanol increased with increasing synthesis temperature (1200 K), which promoted the synthesis of CNFs. SEM analysis revealed morphologically dense CNF formation under isothermal conditions for 20 min at 1300K synthesis temperature.

___

  • Altay, M.C. & Eroglu, S. (2012). Synthesis of multiwalled C nanotubes by Fe-Ni (70 wt.%) catalyzed chemical vapor deposition from pre-heated CH4. Materials Letters, 67(1). DOI: 10.1016/j.matlet.2011.09.011
  • Altay, M.C. & Eroglu, S. (2013a). Growth of multiwalled C nanotubes from pre-heated CH4 using Fe3O4 as a catalyst precursor. Diamond and Related Materials, 31. DOI: 10.1016/j.diamond.2012.10.009
  • Altay, M.C. & Eroglu, S. (2013b). Thermodynamic analysis and chemical vapor deposition of multiwalled carbon nanotubes from pre-heated CH4 using Fe2O3 particles as catalyst precursor. Journal of Crystal Growth, 364. DOI: 10.1016/j.jcrysgro.2012.11.062
  • Altay, M.C. & Eroglu, S. (2016). Non-isothermal reduction behavior of NiO in undiluted Ar and CH4 atmospheres. International Journal of Mineral Processing, 149. DOI: 10.1016/j.minpro.2016.02.005
  • Altay, M.C. & Eroglu, S. (2019). Synthesis of Mo2C from MoO3 and C5OH. JOM, 71(8). DOI: 10.1007/s11837-019-03571-z
  • Bai, Z., Liu, Q., Lei, J. & Jin, H. (2018). Investigation on the mid-temperature solar thermochemical power generation system with methanol decomposition. Applied Energy, 217, 56-65. DOI: 10.1016/j.apenergy.2018.02.101
  • Bhatt, P. & Goe, A. (2017). Carbon Fibres: Production, Properties and Potential Use. Material Science Research India, 14(1), 52-57. DOI: 10.13005/msri/140109
  • Chen, D.S., Wang, Y. & Zou, Y.X. (2020). Activated Carbon Fiber Fabrics in Filtration and Clean Water Resources. Materials Science Forum, 980, 387-393. DOI: 10.4028/www.scientific.net/MSF.980.387
  • Falzon, B. G. (2022). Computational modelling of the crushing of carbon fibre-reinforced polymer composites. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 380(2232). DOI: 10.1098/rsta.2021.0336
  • Grace, N. & Singh, S. (2005). Durability Evaluation of Carbon Fiber-Reinforced Polymer Strengthened Concrete Beams: Experimental Study and Design. ACI Structural Journal, 102.
  • Hegde, S., Satish Shenoy, B. & Chethan, K.N. (2019). Review on carbon fiber reinforced polymer (CFRP) and their mechanical performance. Materials Today: Proceedings, 19, 658-662. DOI: 10.1016/j.matpr.2019.07.749
  • Lee, C.S. & Hyun, Y. (2016). Preparation and Characterization of Carbon Nanofibers and its Composites by Chemical Vapor Deposition. In S. Neralla (Ed.), Chemical Vapor Deposition. IntechOpen. DOI: 10.5772/63755
  • Manawi, Y., Ihsanullah, Samara, A., Al-Ansari, T. & Atieh, M. (2018). A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method. Materials, 11(5), 822. DOI: 10.3390/ma11050822
  • Matsumoto, S., Ohtaki, A., & Hori, K. (2012). Carbon Fiber as an Excellent Support Material for Wastewater Treatment Biofilms. Environmental Science & Technology, 46, 10175–10181. https://doi.org/10.1021/es3020502
  • Özsin, G. & Eren P. A. (2018). Pitch based carbon fiber production. Journal of the Faculty of Engineering and Architecture of Gazi University , 33(4), 1433– 1444. DOI: 10.17341/gazimmfd.4164440
  • Puttaraju, D.G., Hanumantharaju, H.G., Shreyas, Pradeep, & Nuthan. (2020). Investigation of bending properties on carbon fiber reinforced polymer matrix composites used for micro wind turbine blades. Journal of Physics: Conference Series, 1473(1), 012049. DOI: 10.1088/1742- 6596/1473/1/012049
  • Roegiers, J. & Denys, S. (2021). Development of a novel type activated carbon fiber filter for indoor air purification. Chemical Engineering Journal, 417, 128109. DOI: 10.1016/j.cej.2020.128109.
Journal of Anatolian Environmental and Animal Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2016
  • Yayıncı: Bülent VEREP
Sayıdaki Diğer Makaleler

Aygır Preputiumunun Bakteriyel Mikroflorasının Araştırılması

Eser AKAL, Burcu ESİN, Merve Gizem SEZENER, Volkan Enes ERGÜDEN, Arzu FİNDİK

Karadeniz'in Sinop Sahilinden Laurencia obtusa (Hudson) J.V. Lamouroux, 1813'ün Yağ Asidi Bileşimine Mevsimlerin Etkisi

Melek ERSOY KARAÇUHA, Gökhan YILDIZ, Ali KARAÇUHA

Dietilnitrozamin (DEN) Uygulanan Gökkuşağı Alabalıklarında Karaciğer Değişikliklerinin Histopatolojik Değerlendirilmesi

Banu YARDIMCI, Ertan Emek ONUK, Gökmen Zafer PEKMEZCİ

Giresun’da Üretilen Ballarda Neonikotinoid Kalıntı Varlığının LC-MS/MS ile Araştırılması

Seda Dicle KORKMAZ, Özlem KÜPLÜLÜ

Kaplama Atıklarından Üretilen Çimentolu Yongalevhaların Fiziksel ve Mekanik Özelliklerine Pres Parametrelerinin Etkisi

Uğur ARAS, Hüsnü YEL

Karadeniz Alplerinin Doğal Mirasları: Ağaçbaşı, Barma ve Yılantaş Yüksek RakımTurbalıklar, Tabiatı Koruma Alanları, Trabzon, Türkiye

Coşkun ERÜZ

Salmonidlerde Besin Kesesi Tüketimine Etki Eden Faktörler: Tür, Sıcaklık, Tuzluluk ve Fotoperiyot

Nadir BAŞÇINAR, Fatma DELİHASAN SONAY

İntraselüler Anoxybacillus amyloliticus ksilanaz’ının klonlanması, saflaştırılması ve karakterizasyonu

Hakan KARAOĞLU, Züleyha AKPINAR

Maun, dut ve kızılağaç odunlarının toprakta gelişen çeşitli zararlı organizmalara karşı maruz kalması sonrasında meydana gelen renk özelliklerinin belirlenmesi

Göksel ULAY, Ümit AYATA

Erica arborea Bitkisi Kullanılarak Sentezlenen Çinko Nanopartiküllerin Biyoaktivitesinin Değerlendirilmesi

Yılmaz KOÇAK, İsmet MEYDAN