Karadeniz'in Sinop Sahilinden Laurencia obtusa (Hudson) J.V. Lamouroux, 1813'ün Yağ Asidi Bileşimine Mevsimlerin Etkisi

Bu çalışmanın amacı, Sinop sahilinden toplanan Laurencia obtusa'nın yağ asidi profilini belirlemektir. Yağ asitleri profili GC/MS ile analiz edilmiş ve mevsimsel değişimleri incelenmiştir. Örnekleme boyunca L. obtusa'da 36 farklı yağ asidi tespit edilmiştir. Araştırmada kış mevsiminde %33,78±1,03 ile yaz mevsiminde %44,51±1,70 arasında değişen değerlerle en bol bulunan yağ asidinin palmitik asit olduğu belirlendi. Çalışma sonunda L. obtusa'nın PUFA ve SFA içerikleri bakımından en zengin olduğu mevsimin ilkbahar, MUFA içeriği bakımından ise sonbahar olduğu belirlenmiştir Ayrıca çalışmada L. obtusa'daki PUFA/SFA oranının kıştan yaza doğru %0,10 ile %0,23 arasında değiştiği ve toplam n-6/n-3 PUFA oranının ise yazdan sonbahara doğru %1,14 ile %2,37 değiştiği belirlenmiştir. Aterojenite indeksi (AI) değerinin sonbahardan yaza 1,75 ile 1,97 arasında değiştiği bununla birlikte trombojenisite indeksi (TI) değerinin ise kıştan sonbahara 1,58 ile 2,22 arasında değiştği tespit edilmiştir. Araştırma sonucu mevsimlerin yağ asidi profili üzerinde anlamlı bir etkiye sahip olduğunu göstermiştir.

Effect of Seasons on Fatty Acid Composition of Laurencia obtusa (Hudson) J.V. Lamouroux, 1813 From Sinop Coast of the Black Sea

The aim of this study was to determine the fatty acid profile of Laurencia obtusa collected from the Sinop coast. The fatty acids profile were analyzed by GC/MS and their seasonal variation was studied. Along the sampling, it was identified 36 different fatty acids in L. obtusa. During the research, it was determined that the most abundant fatty acid was palmitic acid with values ranging from 33.78±1.03% in winter to 44.51±1.70% in summer. At the end of the study, it was determined that the season in which L. obtusa was richest in terms of PUFA and SFA contents was spring and in terms of MUFA content was autumn. In addition, in the study, It has been determined that the PUFA/SFA ratio in L. obtusa varied between 0.10% and 0.23% from winter to summer, and the total n-6/n-3 PUFA ratio changed between 1.14% and 2.37% from summer to autumn. It was determined that the atherogenicity index (AI) value changed between 1.75 and 1.97 from autumn to summer, and the thrombogenicity index (TI) value changed between 1.58 and 2.22 from winter to autumn. As a result of the research, it was revealed that the seasons have a significant effect on the fatty acid profile.

___

  • Akgül, R., Kızılkaya, B., Akgül, F. & Erduğan, H. (2015). Total lipid and fatty acid composition of twelve Algae from Çanakkale (Turkey). Indian Journal of Geo-Marine Sciences, 44(4), 495-500.
  • Aras, A. & Sayın, S. (2020). Determination of potential of some marine macroalgae for future functional products. Mediterranean Fisheries and Aquaculture Research, 3(1), 22-35.
  • Barbosa, M., Fernandes, F., Pereira, D.M., Azevedo, I.C., Sousa-Pinto, I., Andrade, P.B. & Valentão, P. (2020). Fatty acid patterns of the kelps Saccharina latissima, Saccorhiza polyschides and Laminaria ochroleuca: Influence of changing environmental conditions. Arabian Journal of Chemistry. 13, 45-58. DOI: 10.1016/j.arabjc.2017.01.015
  • Belattmania, Z., Engelen, A.H., Pereira, H., Serrão, E.A., Custódio, L., Varela, J.C., Zrid, R., Reani, A. & Sabour, B. (2018). Fatty acid composition and nutraceutical perspectives of brown seaweeds from the Atlantic coast of Morocco. International Food Research Journal, 25(4), 1520-1527.
  • Berik, N. & Çankırılıgil, E.C. (2019). The elemental composition of green seaweed (Ulva rigida) collected from Çanakkale, Turkey. Aquatic Sciences and Engineering. 34(3), 74-79. DOI: 10.26650/ASE2019557380
  • Berneira, l., Silva, C., Poletti, T., Ritter, M., Santoz, M., Colepicola, P. & Pereira, C.M.P. (2020). Evaluation of the volatile composition and fatty acid profile of seven Antarctic macroalgae. Journal of Applied Phycology, 32, 3319–3329. DOI: 10.1007/s10811-020-02170-9
  • Biris-Dorhoi, E.S., Michiu, D., Pop, C.R., Rotar, A.M., Tofana, M., Pop, O.L., Socaci, A.A. & Farcas, A.C. (2020). Macroalgae a sustainable source of chemical compounds with biological activities. Nutrients, 12,3085. DOI: 10.3390/nu12103085
  • Bligh, E.G. & Dyer, W.J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiolog, 37, 911– 917.
  • Bouafif, C., Messaoud, C., Boussaid, M. & Langar, H. (2018). Fatty acid profile of Cystoseira C. Agardh (Phaeophyceae, Fucales) species from the Tunisian coast: taxonomic and nutritional assessments. Ciencias Marina, 44(3), 169–183. DOI: 10.7773/cm.v44i3.2798
  • Caf, F., Yılmaz, Ö., Durucan, F. & Özdemir, N.Ş. (2015). Biochemical components of three marine macroalgae (Padina pavonica, Ulva lactuca and Taonia atomaria) from the Levantine Sea coast of Antalya, Turkey. Journal of Biological & Environmental Sciences, 6(4), 401-411.
  • Caf, F., Özdemir, N.Ş., Yılmaz, Ö., Durucan, F. & Ak, İ. (2019). Fatty acid and lipophilic vitamin composition of seaweeds from Antalya and Çanakkale (Turkey). Grasas Aceites, 70(3), 312. DOI: 10.3989/gya.0704182
  • Carneiro, J.G., Rodrigues, J.A.G., Teles, F.B., Cavalcante, A.B.D. & Benevides, N.M.B. (2014). Analysis of some chemical nutrients in four Brazilian tropical seaweeds. Acta Scientiarum Biological Sciences, 36(2),137-145. DOI: 10.4025/actascibiolsci.v36i2.19328
  • Cavaco, M., Duarte, A., Freitas, M.V., Afonso, C., Bernardino, S., Pereira, L., Martins, M. & Mouga, T. (2021). Seasonal nutritional profile of Gelidium corneum (Rhodophyta, Gelidiaceae) from the Center of Portugal. Foods, 10,2394. DOI: 10.3390/foods10102394
  • Chen, Z., Xu, Y., Liu, T., Zhang, L., Liu, H. & Guan, H. (2016). Comparative studies on the characteristic fatty acid profiles of four different Chinese medicinal Sargassum seaweeds by GC-MS and chemometrics. Marine Drugs, 14(4),68. DOI:10.3390/md14040068
  • Colombo, M.L., Risé, P., Giavarini, F., de Angelis, L., Galli, C. & Bolis, C.L. (2006). Marine macroalgae as source of polyunsaturated fatty acids. Plant Foods for Human Nutrition, 61(2), 67–72. DOI:10.1007/s11130-006-0015-7
  • Durmaz , Y., Duyar, HA., Gökpınar, Ş., Taşkaya, L., Öğretmen, Ö.Y., Bandarra, N.M. & Nunes M.L., (2008). Fatty Acids, α-tocopherol and total pigment contents of Cystoseira spp., Ulva spp. and Zostera spp. from Sinop Bay (Turkey). International Journal of Natural and Engineering Sciences, 2(3), 111-114.
  • El-Shenody, R.A., Ashour, M. & Ghobara, M.M.E. (2019). Evaluating the chemical composition and antioxidant activity of three Egyptian seaweeds: Dictyota dichotoma, Turbinaria decurrens, and Laurencia obtusa. Brazilian Journal of Food Technology, 22,1-15. DOI: 10.1590/1981- 6723.20318
  • Farghl, A.A.M., Al-Hasawi, Z. & El-Sheekh, M. (2021). Assessment of antioxidant capacity and phytochemical composition of brown and red seaweeds sampled off Red Sea coast. Applied Sciences, 11,1-17. DOI: 10.3390/app112311079
  • Ginneken, V., Helsper, J., de Visser, W., van Keulen, H. & Brandenburg, W. (2011). Polyunsaturated fatty acids in various macroalgal species from north Atlantic and tropical seas. Lipids in Health and Disease, 10(1), 104-111. DOI: 10.1186/1476- 511X-10-104
  • Guerry, A.D., Menge, B.A. & Dunmore, R.A. (2009). Effects of consumers and enrichment on abundance and diversity of benthic algae in a rocky intertidal community. Journal of Experimental Marine Biology and Ecology, 369(2), 155-164. DOI: 10.1016/j.jembe.2008.11.011
  • Guiry, M.D. & Guiry, G.M. (2023). AlgaeBase. World- wide electronic publication, National University of Ireland, Galway. Erişim tarihi: 05.01.2023, https://www.algaebase.org
  • Guschina, I.A. & Harwood, J.L. (2006). Lipids and lipid metabolism in eukaryotic algae. Progress in Lipid Research, 45(2), 160-186. DOI: 10.1016/j.plipres.2006.01.001
  • HMSO, (1994). Nutritional aspects of cardiovascular disease. Department of Health Report on Health and Social Subjects, No. 46, Committee on Medical Aspects of Food Policy, London.
  • Holdt, S.L. & Kraan, S. (2011). Bioactive compounds in seaweed: Functional food applications and legislation. Journal of Applied Phycology, 23(3), 543–597. DOI: 10.1007/s10811-010-9632-5
  • Ichihara, K., Shibahara, A., Yamamoto, K. & Nakayama, T. (1996). An improved method for rapid analysis of the fatty acids of glycer olipids. Lipids, 31, 535-5.
  • Ivanova, V., Stancheva, M. & Petrova, D. (2013). Fatty acid composition of Black Sea Ulva rigida and Cystoseira crinita. Bulgarian Journal of Agricultural Science (BJAS), 19(Suplement 1), 42-47.
  • Kendel, M., Wielgosz-Collin, G., Bertrand, S., Roussakis, C., Bourgougnon, N.B. & Bedoux, G. (2015). Lipid composition, fatty acids and sterols in the seaweeds Ulva armoricana, and Solieria chordalis from Brittany (France): An analysis from nutritional, chemotaxonomic, and antiproliferative activity perspectives. Marine Drugs, 13(9), 5606-5628. DOI: 10.3390/md13095606
  • Kumar, M., Kumari, P., Trivedi, N., Shukla, M.K., Gupta, V., Reddy, C. & Jha, B. (2011). Minerals, PUFAs and antioxidant properties of some tropical seaweeds from Saurashtra coast of India. Journal of Applied Phycology, 23(5), 797– 810. DOI: 10.1007/s10811-010-9578-7
  • Kumari, P., Kumar, M., Gupta, V., Reddy, C. & Jha, B. (2010). Tropical marine macroalgae as potential sources of nutritionally important PUFAs. Food Chemistry, 120(3), 749-757. DOI: 10.1016/j.foodchem.2009.11.006
  • Kumari, P., Bijo, A., Mantri, V.A., Reddy, C. & Jha, B. (2013). Fatty acid profiling of tropical marine macroalgae: An analysis from chemotaxonomic and nutritional perspectives. Phytochemistry, 86, 44–56. DOI: 10.1016/j.phytochem.2012.10.015
  • Mansilla, A. & Avila, M. (2011). Using Macrocystis pyrifera (L.) C. Agardh from southern Chile as a source of applied biological compounds. Revista Brasileira de Farmacognosia, 21, 262-267. DOI: 10.1590/S0102-695X2011005000072
  • Martins, R.M., dos Santos, M.A.Z., Pacheco, B.S., Mansilla, A., Astorga-España, M.S., Seixa, F. & Pereira, C.M.P. (2016). Fatty acid profile of the chlorophyta species from Chile's sub- Antarctic region. Academia Journal of Scientific Research, 4, 93-98. DOI: 10.15413/ajsr.2015.0154
  • Moreira, A.S., da Costa, E., Melo, T., Lopes, D., Pais, A., Santos, S.A., Pitarma, B., Mendes, M., Abreu, M.H. & Collén, P.N. (2021). Polar lipids of commercial Ulva spp. of different origins: Profiling and relevance for seaweed valorization. Foods, 10(5), 914. DOI: 10.3390/foods10050914
  • Moustafa, Y. & Batran, A. (2014). Lipid chemistry of green macroalgae Ulva sp. a potential resource for biotechnological applications in the Southern Mediterranean Sea Coast, Alexandria shore, Egypt. Egyptian Journal of Aquatic Biology and Fisheries, 18(4), 9-20. DOI: https://doi.org/10.12816/0011084
  • Neda, M., Neda, S. & Freza, R. (2014). Proximate and fatty acid composition of the southern Caspian Sea macroalgae. Journal of the Persian Gulf (Marine Science), 18(5), 63-72.
  • Nelson, M.M., Phleger, C.F. & Nichols, P.D. (2005). Seasonal lipid composition in macroalgae of the northeastern pacific ocean. Botanica Marina, 45(1), 58–65. DOI: 10.1515/BOT.2002.007
  • Olsson, J., Raikova, S., Mayer, J.J., Steinhagen, S., Chuck, C.J., Nylund, G.M. & Alber, E. (2020). Effects of geographical location on potentially valuable components in Ulva intestinalis sampled along the Swedish coast. Applied Phycology, 1(1), 80-92. DOI: 10.1080/26388081.2020.1827454
  • Pabuçcu, K., Yılmaz, N., Şahin, F., Faruk, B., Canpolat, E. & Yücel, T.D. (2018). The comparisons of fatty acid composition in some marine and freshwater algae. Wulfenia Journal, 25(8), 40-47.
  • Paiva, L., Lima, E., Neto, A.I., Marcone, M. & Baptista, J. (2017). Nutritional and functional bioactivity value of selected Azorean macroalgae: Ulva compressa, Ulva rigida, Gelidium microdon, and Pterocladiella capillacea. Journal of Food Science, 82(7), 1757-1764. DOI: 10.1111/1750- 3841.13778
  • Panayotova, V., Merzdhanova, A., Dobreva, D.A., Zlatanov, M. & Makedonski, L. (2017). Lipids of Black Sea algae: unveiling their potential for pharmaceutical and cosmetic applications. Journal of IMAB- Annual Proceeding (Scientific Papers), 3(4), 1747-1751. DOI: 10.5272/jimab.2017234.1747
  • Pereira, T., Horta, A., Barroso, S., Mendes, S. & Gil, M.M. (2021). Study of the seasonal variations of the fatty acid profiles of selected macroalgae. Molecules, 26, 5807. DOI: 10.3390/molecules26195807
  • Peng, Y., Hu, J., Yang, B., Lin, X.P., Zhou, X.F., Yang, X.W. & Liu, Y.H. (2015). Chemical composition of seaweeds. In B. K., Tiwari, & D. J., Troy (Ed.) Seaweed Sustainability Food and Non-Food Applications, 79–124p., London: Elsevier- Academic Press. DOI: 10.1016/B978-0-12- 418697-2.00005-2
  • Polat, S. & Özoğul, Y. (2008). Biochemical composition of some red and brown macroalgae from the northeastern Mediterranean Sea. International Journal of Food Science and Nutrition, 59(7), 566-572. DOI: 10.1080/09637480701446524
  • Seca, A.M.L., Gouveia, V.L.M., Carmo Barreto, M., Silva, A.M.S. & Pinto, D.C.G.A. (2018). Comparative study by GC-MS and chemometrics on the chemical and nutritional profile of Fucus spiralis L. juvenile and mature life-cycle phases. Journal of Applied Phycology, 30(4), 2539-2548. DOI: 10.1007/s10811-018-1447-9
  • Schmid, M., Guihéneuf, F. & Stengel, D.B. (2014). Fatty acid contents and profiles of 16 macroalgae collected from the Irish coast at two seasons. Journal of Applied Phycology, 26, 451-463. DOI: 10.1007/s10811-013-0132-2
  • Schmid, M., Kraft, L.G.K., Van Der Loos, L.M., Kraft, G.T., Virtue, P., Nichols, P.D. & Hurd, C.L. (2018). Southern Australian seaweeds: A promising resource for omega-3 fatty acids. Food Chemistry, 265, 70-77. DOI: 10.1016/j.foodchem.2018.05.060
  • Susanto, E., Fahmi, A.S., Abe, M., Hosokawa, M. & Miyashita, K. (2016). Lipids, fatty acids, and fucoxanthin content from temperate and tropical brown seaweeds. Aquatic Procedia, 7, 66–75. DOI: 10.1016/j.aqpro.2016.07.009
  • Turan, F., Ozgun, S., Sayın, S. & Ozyılmaz, G. (2015). Biochemical composition of some red and green seaweeds from Iskenderun Bay, the northeastern Mediterranean coast of Turkey. Journal Black Sea/Mediterranean Environment, 21(3), 239-249.
  • Ulbricht, T. & Southgate, D. (1991). Coronary heart disease: Seven dietary factors. The Lancet, 338 (8773), 985-992. DOI: 10.1016/0140- 6736(91)91846-M
  • Uslu, L., Durmaz, Y., Duyar, H.A. & Bandarra, N.M. (2013). Fatty acids, α-tocopherol and proximate composition of four red macroalgae in the Sinop Bay (Turkey). Journal of Animal and Veterinary Advances, 12(1), 29-33. DOI: 10.3923/javaa.2013.29.33
  • Wood, J.D., Richardson, R.I., Nute, G.R., Fisher, A.V., Campo, M.M., Kasapidou, E., Sheard, P.R. & Enser, (2004). Effects of fatty acids on meat quality: a review. Meat Science, 66(1), 21–32. DOI: 10.1016/S0309-1740(03)00022-6
  • Yazıcı, Z., Aysel, V., Öksüz, E., Köse, A., Cumali, S. & Güven, K.C. (2008). Fatty acid composition of marine macroalgae from the Black Sea and Dardanelles. Toxicological & Environmental Chemistry, 89(2), 371-379. DOI: 10.1080/02772240601012366
  • Yeşilova, K., Balkıs, N. & Taşkın, E. (2017). Seasonal investigation of the protein, carbohydrate and lipid contens of dominant macroalgae on the western coast of the Black Sea. Fresenius Environmental Bulletin, 26(1), 46-55.
  • Zhuang, S.H. & Zhang, M. (2001). Biodiversity investigation. II. The biodiversity in intertidals of Yantai littoral regions. Shandong Map Publisher, Jinan.
  • Zubia, M., Robledo, D. & Freile-Pelegrin, Y. (2007). Antioxidant activities in tropical marine macroalgae from the Yucatan Peninsula, Mexico. Journal of Applied Phycology, 19(5), 449-458. DOI: 10.1007/s10811-006-9152-5.
Journal of Anatolian Environmental and Animal Sciences-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2016
  • Yayıncı: Bülent VEREP
Sayıdaki Diğer Makaleler

Erica arborea Bitkisi Kullanılarak Sentezlenen Çinko Nanopartiküllerin Biyoaktivitesinin Değerlendirilmesi

Yılmaz KOÇAK, İsmet MEYDAN

Deniz Deşarjından Yatay Deşarj Edilmiş Tekil Soğuk Su Jetlerinin Çarpma Noktası Seyrelmesinin Us Epa Vısual Plumes-Um3 Modeli İle İncelenmesi

Uğur Emre TEMELLİ, Naim SEZGİN, Bilge ÖZDOĞAN CUMALI, Semih NEMLİOGLU

Dietilnitrozamin (DEN) Uygulanan Gökkuşağı Alabalıklarında Karaciğer Değişikliklerinin Histopatolojik Değerlendirilmesi

Banu YARDIMCI, Ertan Emek ONUK, Gökmen Zafer PEKMEZCİ

Pomacea maculata ile Cüce Vatoz Balığının Ortak Yaşamı ve Beslenme Açısından Faydaları

Nilay SEYİDOĞLU, Çetin YAĞCILAR, Deniz KARAKCI

Süs Balıkları Yetiştiriciliği Uygulamalarında Zemin Materyali Olarak Farklı Boyutlarda Diyatomitin Amonyak Tutmasına Etkisinin Araştırılması

Dilek ŞAHİN, Meryem ÖZ, Ünal ÖZ

İntraselüler Anoxybacillus amyloliticus ksilanaz’ının klonlanması, saflaştırılması ve karakterizasyonu

Hakan KARAOĞLU, Züleyha AKPINAR

Karakaya Baraj Gölü’nde Yaşayan Arabibarbus grypus (Heckel, 1843) (Şabut) Populasyonunun Bazı Büyüme Özelliklerinin Belirlenmesi

Burhan CENGİZ, Engin ŞEKER, Ebru İfakat ÖZCAN

Sinnamaldehit ve Eugenolün Sivrisinek Yumurtlamasını Engelleme ve Larvisidal Etkisi

Harun ÇİMEN

Diyabetes Mellitusta Fitoterapinin Etkisi

Muhammed Taha KAYA, Tolga GÜVENÇ

Türkiye'de “Su Ürünleri” Alanında Hazırlanmış Doktora Tezlerinin Bibliyometrik Analizi (1979-2022)

Hamdi AYDIN