SOĞUK ÇALIŞMA VE RÖLANTİ KOŞULLARINDA ÖN ISITICI YÜKÜNÜN VE KONUMUNUN KATALİTİK KONVERTÖR VERİMLİLİĞİNE ETKİLERİ

Egzoz emisyonları, kentsel yaşam tarzlarını etkileyen önemli kirleticilerdir. Hem benzinli hem de dizel motorların egzoz emisyonları ile ilgili çeşitli düzenlemeler bulunmaktadır. Bu çalışmada, egzoz hattının katalitik konvertörden önce kontrollü olarak ısıtılmasının konvertör verimine etkisi deneysel olarak incelenmiştir. Deneyler ya kesik ya da soğuk başlangıç koşullarına göre yapılmıştır. Kesik koşullar için motor, normal ve kararlı durum çalışma koşullarına ulaşana kadar çalıştırıldı. Daha sonra, katalitik konvertör yüzey sıcaklığı ortam sıcaklığına ulaşana kadar motor durdurulmuştur. Deneylere önce ilave ısıtma yapılmadan başlanmış, daha sonra farklı ısıtma yükleri ile devam edilmiştir. İkinci aşamada, soğuk çalıştırma koşulları altında katalitik konvertörün davranışı ve dönüşüm verimi incelenmiştir. Egzoz manifoldundan çıkan egzoz gazı, motorun çalıştırılmasından sonraki ilk 150 saniye boyunca farklı ısıtma yükleriyle ön ısıtmaya tabi tutulmuştur; ancak egzoz hattı motor çalıştırılmadan 15 saniye önce ısıtılmaya başlanmıştır. Elektrik dirençlerinin konumu, uzunluğu ve ısı yüklerinin katalitik konvertör davranışı üzerindeki etkileri araştırılmıştır. Tüm deneylerden sonra, uygun konum ve ısıtma yükleri ile, kesikli çalışma koşulları için, hidrokarbon (HC) ve karbon monoksit (CO) emisyon dönüşüm verimlerinin, motorun 50 saniye çalıştırılmasından sonra yaklaşık %100'e ulaştığı sonucuna varılmıştır. Soğuk çalıştırma koşulları için, hidrokarbon (HC) ve karbon monoksit (CO) emisyon dönüşüm verimleri sırasıyla %35 ve %80'e ulaşmıştır.

EFFECTS OF PREHEATER LOAD AND LOCATION ON THE CATALYTIC CONVERTER EFFICIENCY DURING COLD START AND IDLING CONDITIONS

Exhaust emissions are significant pollutants that affect urban lifestyles. There are several regulations related to the exhaust emissions of both gasoline and diesel engines. In this study, the effects of a controlled heating of the exhaust line before the catalytic converter on the converter efficiency are experimentally investigated. Experiments were conducted based on either discrete or cold start conditions. For discrete conditions, the engine was operated until it reached normal and steady state operating conditions. Then, the engine was stopped until the catalytic converter surface temperature reached the ambient temperature. The experiments were first started without additional heating and then continued with different heating loads. In the second stage, the catalytic converter behavior and conversion efficiency under cold start conditions were investigated. The exhaust gas after the exhaust manifold was preheated with different heating loads for the first 150 seconds after the start of the engine; however, the exhaust line was heated 15 s before starting the engine. The effects of the location, length and heat loads of the electrical resistances on the catalytic converter behavior were investigated. After all of the experiments, it was concluded that with the appropriate location and heating loads, for discrete operating conditions, the hydrocarbon (HC) and carbon monoxide (CO) emission conversion efficiencies reached nearly 100 % after 50 s of starting the engine. For cold start conditions, the hydrocarbon (HC) and carbon monoxide (CO) emission conversion efficiencies reached 35 % and 80 %, respectively.

___

  • Bhaskar K., Nagarajan G. and Sampath S., 2010, Experimental Investigation On Cold Start Emissions Using Electrically Heated Catalyst in A Spark Ignition Engine, International Journal of Automotive and Mechanical Engineering, 2, 105–118. Bhattacharyya S. and Das, R.K., 1999, Catalytic Control of Automotive NOx : a Review, Int. J. Energy Res., 23, 351–369.
  • Coppage, G.N. and Bell, S.R., 2002, Use of an Electrically Heated Catalyst to Reduce Cold-Start Emissions in a Bi-Fuel Spark Ignited Engine, J. Eng. Gas Turbines Power, 123, 125, doi:10.1115/1.1340640.
  • Dinler N., Aktas F. and Yucel, N., 2018, Effects of channel design and temperature on the performance of the catalytic converter, Int. J. Green Energy, 15, 813-820, doi:10.1080/15435075.2018.1529578.
  • Durat M. , Parlak Z. , Kapsız M. , Parlak A. and Fıçıcı F., 2013, Bir Buji Ateşlemeli Motorun Egzoz Sisteminin Termal Performasının CFD ve Deneysel Analizi. Isı Bilimi ve Tekniği Dergisi. 33(2): 89-99.
  • Gong C., Huang K., Deng B. and Liu X., 2011, Catalyst light-off behavior of a spark-ignition LPG (liquefied petroleum gas) engine during cold start, Energy, 36, 53–59, doi:10.1016/j.energy.2010.11.026.
  • Guerrero L.M., Mendoza J.F., Ong K.T.V., Olegario-Sanchez E.M. and Ferrer, E.L., 2019, Copper-Exchanged Philippine Natural Zeolite as Potential Alternative to Noble Metal Catalysts in Three-Way Catalytic Converters, Arab. J. Sci. Eng., 44, 5581–5588, doi:10.1007/s13369-019-03882-y.
  • Guojiang W. and Song T., 2005, CFD simulation of the effect of upstream flow distribution on the light-off performance of a catalytic converter, Energy Conversion and Management, 46, 2010–2031, doi:10.1016/j.enconman.2004.11.001.
  • Heywood J.B., 1988, Internal Combustion Engine Fundamentals, McGraw-Hill.
  • Horng R.-F., Chou H.-M. and Hsu T.-C., 2004, Effects of heating energy and heating position on the conversion characteristics of the catalyst of a four-stroke motorcycle engine in cold start conditions, Energy Conversion and Management, 45, 2113–2126, doi:10.1016/j.enconman.2003.10.012.
  • Iliyas A., Zahedi-Niaki M.H., Eić M. and Kaliaguine S., 2007, Control of hydrocarbon cold-start emissions: A search for potential adsorbents, Microporous Mesoporous Mater., 102, 171–177, doi:10.1016/j.micromeso.2006.12.038.
  • Kalam M.A. and Hassan M.H., 2011, Design, Modification and Testing of a Catalytic Converter for Natural Gas Fueled Engines, Arab. J. Sci. Eng., 36, 677–688, doi:10.1007/s13369-011-0078-0.
  • Kandylas I.P. and Stamatelos A.M., 2000, The behaviour of aged three-way catalytic converters in the different modes of legislated cycles, Int. J. Energy Res., 24, 425–442. Koltsakis G., 1997, Catalytic automotive exhaust aftertreatment, Prog. Energy Combust. Sci., 23, 1–39, doi:10.1016/S0360-1285(97)00003-8.
  • Lafyatis D.S., Ansell G.P., Bennett S.C., Frost J.C., Millington P.J., Rajaram R.R., Walker A.P. and Ballinger T.H., 1998, Ambient temperature light-off for automobile emission control, Appl. Catal. B Environ., 18, 123–135, doi:10.1016/S0926-3373(98)00032-0.
  • Mahadevan G. and Subramanian S., 2017, Experimental Investigation of Cold Start Emission using Dynamic Catalytic Converter with Pre-Catalyst and Hot Air Injector on a Multi Cylinder Spark Ignition Engine, SAE Technical Paper 2017-01-2367, doi:10.4271/2017-01-2367.
  • Pulkrabek W.W., 2004, Engineering Fundamentals of the Internal Combustion Engine, New Jersey, Pearson Prentice Hall.
  • Ramanathan K., West D.H., Balakotaiah V., 2004, Optimal design of catalytic converters for minimizing cold-start emissions, Catalysis Today, 98, 357–373, doi:10.1016/j.cattod.2004.08.003.
  • Roberts A., Brooks R. and Shipway P., 2014, Internal combustion engine cold-start efficiency: A review of the problem, causes and potential solutions, Energy Conversion and Management, 82, 327–350, doi:10.1016/j.enconman.2014.03.002.
  • Sendilvelan S. and Bhaskar K., 2016, Experimental analysis of catalytic converter for reducing environmental pollution from SI engine using electrically initiated and chemically heated catalyst, ARPN J. Eng. Appl. Sci., 11, 13735–13739.
  • Shah A.N., Ge Y. Shan and Jiang L., 2011, Impact of a Urea-Selective Catalytic Reduction System on Volatile Organic Compound Emissions from a Diesel Engine, Arab. J. Sci. Eng., 36, 891–901, doi:10.1007/s13369-011-0072-6.
  • Tyagi R.K. and Ranjan R., 2015, Effect of heating the catalytic converter on emission characteristic of gasoline automotive vehicles, Int. J. Ambient Energy, 36, 235–241, doi:10.1080/01430750.2013.853205.