GLUTAMAT/GABA-GLUTAMİN ÇEVRİMİNDE GÖREV ALAN TAŞIYICI PROTEİNLER İÇİN TERMODİNAMİĞİN BİRİNCİ YASA ANALİZİ

Glutamin-glutamat/GABA çevrimi (GGC), nörotransmiter homeostazını sürdürmek için glutamatın nörotransmitter havuzunun yenilenmesini sağlayan bir olaylar dizisidir. GGC'de, glutamat veya GABA molekülleri nöronlardan salınır ve ardından astrositlere alınır. Astrositler, glutamat veya GABA moleküllerini glutamine dönüştürür ve onları sinapsa salar. Glutamin molekülleri, glutamat veya GABA sentezi için bir öncü olarak kullanılmak üzere nöronlar tarafından alınır. Bu moleküllerin, nöronların ve astrositlerin hücre zarları boyunca taşınması, taşıyıcı proteinler tarafından sağlanmaktadır. Söz konusu taşıyıcı proteinler biyomoleküler makinalar olup termodinamik çevrimlerde çalışmakta ve giren enerjinin bir kısmını yararlı işe dönüştürmektedir. Moleküllerin/iyonların elektrokimyasal gradyanı yönündeki taşınımından elde eldilen enerji, protein içerisinde mekanik yararlı işe dönüştürülerek moleküllerin/iyonların elektrokimyasal gradyanlarının tersine taşınımı için kullanılmaktadır. Çalışmamızda enerjinin korunumu yasası uygulanmıştır ve çevrim boyunca sisteme giren enerjinin ne kadarının yararlı işe dönüştürüldüğünü gösteren termodinamik birinci yasa verimlilikleri, GGC’de bulunan EAAT, ASCT2, B0AT2, SA, SN ve GABA taşıyıcıları için hesaplanmıştır. Sinapstaki nörotransmitter konsantrasyonları, sinyal iletimiyle değişmekte ve daha sonra bazal seviyelerine geri dönmektedir. Bu ise taşıyıcıların konsatrasyonlara bağlı olarak değişen birinci yasa verimlilik değerleriyle çalışmalarına sebep olmaktadır. EAAT (glutamat taşınımı için), ASCT2, B0AT2, SA SN, GABA (ileri yönde taşınım) için birinci yasa verimliliklerinin aralıkları sırasıyla %60-85, %46-78, %61-89, %61-89, %55-80 ve %54-76 olarak hesaplanmıştır. Taşıyıcı proteinler için elde edilen verimlilik değerleri, günlük hayatımızda karşılaştığımız makro ölçekli ısı makinalarına nazaran çok yüksektir. Buna ek olarak, EAAT proteinin glutamat taşınımını, maksimum %45 değerinde birinci yasa verimliliğiyle gerçekleşen aspartat taşınımına göre, daha yüksek verimlilikle gerçekleştirdiği belirlenmiştir. Dolayısıyla, farklı substratların aynı taşıyıcı tarafından taşınımının farklı verimliliklerle gerçekleşebileceği ortaya konulmuştur.

THE FIRST LAW OF THERMODYNAMICS ANALYSIS OF TRANSPORTERS INVOLVED IN THE GLUTAMATE/GABA-GLUTAMINE CYCLE

The glutamine–glutamate/GABA cycle (GGC) is a sequence of events that provides replenishment of the neurotransmitter pool of glutamate in order to maintain neurotransmitter homeostasis. In the GGC, glutamate or GABA molecules are released from neurons and subsequently taken up into astrocytes. Astrocytes convert glutamate or GABA molecules into glutamine and release them into the synapse. Glutamine molecules are taken up by neurons to be used as a precursor for the synthesis of glutamate or GABA. The transport of these molecules across the membranes of neurons and astrocytes is facilitated by transporter proteins. Each of these transporter proteins is a biomolecular machine; they operate on thermodynamic cycles and convert part of the supplied energy input into useful work output. Energy harnessed from the translocation of molecules/ions down their electrochemical gradient is converted into mechanical useful work translocating molecules/ions against their electrochemical gradient. Conservation of energy principle was applied and thermodynamic first law efficiencies, showing how much of the energy input per cycle is converted into useful work, were evaluated for the thermodynamic cycles of EAAT, ASCT2, B0AT2, SA, SN, and GABA transporters involved in the GGC. Neurotransmitter concentrations in the synapse change upon signal arrival and subsequently return to resting levels, causing transporters to operate under various first law efficiencies. Range of first law efficiencies for EAAT (for glutamate transport), ASCT2, B0AT2, SA SN, GABA (forward mode) were calculated as 60-85%, 46-78%, 61-89%, 61-89%, 55-80%, and 54-76%, respectively. Efficiency values obtained for these transporters are much higher than those of the macro-scaled heat engines we encounter in our daily lives. Furthermore, EAAT showed larger thermodynamic first law efficiency for glutamate transport than aspartate transport, which takes place with a maximum efficiency of 45%. Thus, suggesting the possibility that transport of different substrates by the same transporter may take place with different efficiencies.

___

  • Alberts B., 2002, Membrane transport of small molecules and the electrical properties of membranes, Molecular biology of the cell, 615-657.
  • Bak L. K., Schousboe A. and Waagepetersen H. S., 2006, The glutamate/GABA‐glutamine cycle: aspects of transport, neurotransmitter homeostasis and ammonia transfer, Journal of neurochemistry, 98,3, 641-653.
  • Betts J., Desaix P., Johnson E., Johnson J., Korol O., Kruse D., Poe B., Wise J., Womble M. and Young K., 2013, OpenStax College & Rice University, Anatomy & physiology.
  • Bhutia Y. D. and Ganapathy V., 2016, Glutamine transporters in mammalian cells and their functions in physiology and cancer, Biochimica et Biophysica Acta (BBA)-Molecular Cell Research, 1863,10, 2531-2539.
  • Bröer A., Brookes N., Ganapathy V., Dimmer K. S., Wagner C. A., Lang F. and Bröer S., 1999, The astroglial ASCT2 amino acid transporter as a mediator of glutamine efflux, Journal of neurochemistry, 73,5, 2184-2194.
  • Bröer A., Tietze N., Kowalczuk S., Chubb S., Munzinger M., Bak L. K. and Bröer S., 2006, The orphan transporter v7-3 (slc6a15) is a Na+-dependent neutral amino acid transporter (B0AT2), Biochemical Journal, 393,1, 421-430.
  • Bröer S., 2014, The SLC38 family of sodium–amino acid co-transporters, Pflügers Archiv-European Journal of Physiology, 466,1, 155-172.
  • Cabrera-Pastor A., Arenas Y. M., Taoro-Gonzalez L., Montoliu C. and Felipo V., 2019, Chronic hyperammonemia alters extracellular glutamate, glutamine and GABA and membrane expression of their transporters in rat cerebellum. Modulation by extracellular cGMP, Neuropharmacology, 161, 107496.
  • Cater R. J., Vandenberg R. J. and Ryan R. M., 2014, The domain interface of the human glutamate transporter EAAT1 mediates chloride permeation, Biophysical journal, 107,3, 621-629.
  • Cengel Y. A. and Boles M. A., 2008, Thermodynamics: An Engineering Approach, McGraw-Hill.
  • Chen Z. L. and Huang R. Q., 2014, Extracellular pH modulates GABAergic neurotransmission in rat hypothalamus, Neuroscience, 271, 64-76.
  • Danbolt N. C., 2001, Glutamate uptake, Progress in neurobiology, 65,1, 1-105.
  • Danbolt N. C., Furness D. N. and Zhou Y., 2016, Neuronal vs glial glutamate uptake: resolving the conundrum, Neurochemistry international, 98, 29-45.
  • Erecińska M., Wantorsky D. and Wilson D. F., 1983, Aspartate transport in synaptosomes from rat brain, Journal of Biological Chemistry, 258,15, 9069-9077.
  • Eskandari S., Willford S. L. and Anderson C. M., 2017, Revised ion/substrate coupling stoichiometry of GABA transporters, Glial Amino Acid Transporters, Springer.
  • Featherstone D. E., 2009, Intercellular glutamate signaling in the nervous system and beyond, ACS chemical neuroscience, 1,1, 4-12.
  • Gesemann M., Lesslauer A., Maurer C. M., Schönthaler H. B. and Neuhauss S. C., 2010, Phylogenetic analysis of the vertebrate excitatory/neutral amino acid transporter (SLC1/EAAT) family reveals lineage specific subfamilies, BMC evolutionary biology, 10,1, 117.
  • Gur M., Golcuk M., Yilmaz S. Z. and Taka E., 2019, Thermodynamic first law efficiency of membrane proteins, Journal of biomolecular structure & dynamics, 1.
  • Heckel T., Bröer A., Wiesinger H., Lang F. and Bröer S., 2003, Asymmetry of glutamine transporters in cultured neural cells, Neurochemistry International, 43,4, 289-298.
  • Herman M. A. and Jahr C. E., 2007, Extracellular glutamate concentration in hippocampal slice, Journal of Neuroscience, 27,36, 9736-9741.
  • Höglund P. J., Nordström K. J., Schiöth H. B. and Fredriksson R., 2010, The solute carrier families have a remarkably long evolutionary history with the majority of the human families present before divergence of Bilaterian species, Molecular biology and evolution, 28,4, 1531-1541.
  • Jong Y.-J. I. and O’Malley K. L., 2017, Mechanisms associated with activation of intracellular metabotropic glutamate receptor, mGluR5, Neurochemical research, 42,1, 166-172.
  • Kanai Y., Clémençon B., Simonin A., Leuenberger M., Lochner M., Weisstanner M. and Hediger M. A., 2013, The SLC1 high-affinity glutamate and neutral amino acid transporter family, Molecular aspects of medicine, 34,2-3, 108-120.
  • Kanai Y. and Hediger M. A., 2004, The glutamate/neutral amino acid transporter family SLC1: molecular, physiological and pharmacological aspects, Pflügers Archiv, 447,5, 469-479.
  • Kjelstrup S., De Meis L., Bedeaux D. and Simon J.-M., 2008, Is the Ca 2+-ATPase from sarcoplasmic reticulum also a heat pump?, European Biophysics Journal, 38,1, 59-67.
  • Landowski C., Suzuki Y. and Hediger M., 2007, Transporters for Excitatory and Neutral Amino Acids, Handbook of Neurochemistry and Molecular Neurobiology: Neural Membranes and Transport, 305-323.
  • Lin L., Yee S. W., Kim R. B. and Giacomini K. M., 2015, SLC transporters as therapeutic targets: emerging opportunities, Nature reviews Drug discovery, 14,8, 543.
  • Lodish H. F., 2016, Transmembrane Transport of Ions and Small Molecules, Molecular Cell Biology, 8th Ed W. H. Freeman and Company.
  • Nakanishi T., Kekuda R., Fei Y.-J., Hatanaka T., Sugawara M., Martindale R. G., Leibach F. H., Prasad P. D. and Ganapathy V., 2001, Cloning and functional characterization of a new subtype of the amino acid transport system N, American Journal of Physiology-Cell Physiology, 281,6, C1757-C1768.
  • Oppedisano F., Pochini L., Galluccio M. and Indiveri C., 2007, The glutamine/amino acid transporter (ASCT2) reconstituted in liposomes: transport mechanism, regulation by ATP and characterization of the glutamine/glutamate antiport, Biochimica et Biophysica Acta (BBA)-Biomembranes, 1768,2, 291-298.
  • Orkand R. K., 1986, Introductory remarks: Glial‐interstitial fluid exchange, Annals of the New York Academy of Sciences, 481,1, 269-272.
  • Ortega A. and Schousboe A., 2017, Glial Amino Acid Transporters, Springer International Publishing. Owens D. F. and Kriegstein A. R., 2002, Is there more to GABA than synaptic inhibition?, Nature Reviews Neuroscience, 3,9, 715.
  • Pinilla-Tenas J., Barber A. and Lostao M., 2003, Transport of proline and hydroxyproline by the neutral amino-acid exchanger ASCT1, The Journal of membrane biology, 195,1, 27-32.
  • Pramod A. B., Foster J., Carvelli L. and Henry L. K., 2013, SLC6 transporters: structure, function, regulation, disease association and therapeutics, Molecular aspects of medicine, 34,2-3, 197-219.
  • Rose C. R., 1997, Intracellular Na+ regulation in neurons and glia: functional implications, The Neuroscientist, 3,2, 85-88.
  • Sakai K., Shimizu H., Koike T., Furuya S. and Watanabe M., 2003, Neutral amino acid transporter ASCT1 is preferentially expressed in L-Ser-synthetic/storing glial cells in the mouse brain with transient expression in developing capillaries, Journal of Neuroscience, 23,2, 550-560.
  • Schlessinger A., Yee S. W., Sali A. and Giacomini K. M., 2013, SLC classification: an update, Clinical Pharmacology & Therapeutics, 94,1, 19-23.
  • Schousboe A., Sarup A., Bak L., Waagepetersen H. and Larsson O., 2004, Role of astrocytic transport processes in glutamatergic and GABAergic neurotransmission, Neurochemistry international, 45,4, 521-527.
  • Schousboe A. and Sonnewald U., 2016, Glutamate/gaba-glutamine Cycle, Springer.
  • Schwartzkroin P. A., 2009, MRS,Encyclopedia of Basic Epilepsy Research, Elsevier Science.
  • Vandenberg R. J. and Ryan R. M., 2013, Mechanisms of glutamate transport, Physiological reviews, 93,4, 1621-1657.
  • Walls A. B., Waagepetersen H. S., Bak L. K., Schousboe A. and Sonnewald U., 2015, The glutamine–glutamate/GABA cycle: Function, regional differences in glutamate and GABA production and effects of interference with GABA metabolism, Neurochemical research, 40,2, 402-409.
  • Willford S. L., Anderson C. M., Spencer S. R. and Eskandari S., 2015, Evidence for a revised ion/substrate coupling stoichiometry of GABA transporters, The Journal of membrane biology, 248,4, 795-810.
  • Yamamoto T., Nishizaki I., Furuya S., Hirabayashi Y., Takahashi K., Okuyama S. and Yamamoto H., 2003, Characterization of rapid and high-affinity uptake of L-serine in neurons and astrocytes in primary culture, FEBS Letters, 548,1-3, 69-73.
  • Zhou Y. and Danbolt N., 2014, Glutamate as a neurotransmitter in the healthy brain, Journal of neural transmission, 121,8, 799-817.
  • Zimmermann E. and Seifert U., 2012, Efficiencies of a molecular motor: a generic hybrid model applied to the F1-ATPase, New Journal of Physics, 14,10, 103023.
  • Zomot E. and Bahar I., 2013, Intracellular gating in an inward-facing state of aspartate transporter GltPh is regulated by the movements of the helical hairpin HP2, Journal of Biological Chemistry, 288,12, 8231-8237.