BİR DİZEL MOTORUNUN EGZOZ GAZI İLE ENERJİLENDİRİLEN STIRLING MOTORUNUN ISIL PERFORMANS ANALİZLERİ

Teorik ve deneysel birçok araştırma içten yanmalı motorlarda ¾ ve daha fazla gaz kelebek açıklığında, 3000 rpm ve daha yüksek devirlerde egzoz gazı sıcaklığının 900-1000 K’e ulaştığını göstermektedir. İçten yanmalı motorlarda egzoz gazı ile atılan ısı yaklaşık olarak motorların güçlerine eşit miktardadır. İçten yanmalı motorların bu özellikleri göz önünde bulundurularak, bu çalışmada içten yanmalı bir motor ve bir stirling motorundan meydana gelen hibrit bir motorun termodinamik analizlerinin yapılması amaçlanmıştır. Bu hibrit motor; içten yanmalı motor ile stirling motorunun krank mili ve silindirinin ortak kullanımı ile meydana gelmektedir. İçten yanmalı motor geleneksel olmayan bir piston ve biyel mekanizmasından oluşan 4 zamanlı bir dizel motordur. Bu tip pistonlar kullanılarak aynı silindir içerisinde biri piston tepesinin üstünde diğeri pistonun alt tarafında olmak üzere iki oda oluşturulmaktadır. Bu çalışmada sunulan hibrit motorda pistonun altında kalan hacim stirling motorun genleşme hacmi olarak kullanılırken diğer oda dizel motorun çalışma hacmi olarak kullanılmaktadır. Bu çalışmada yaygın kullanımda olan bir dizel motorunun istatistiksel verileri kullanılarak stirling motorunun termodinamik performansı incelenmiştir. Stirling motoru için analiz girdileri olarak; 800 K ısıtıcı yüzey sıcaklığı, 392 K soğutucu yüzey sıcaklığı, 800 W/m2K rejeneratörün ısı transfer katsayısı, 300 W/m2K ısıtıcı ve soğutucunun ısı transfer katsayısı, 250 rad/s motor hızı ve 12.5 bar hava şarj basıncı kullanılmıştır. Dizel motorunun çıkış gücünün 120kW olduğu varsayılarak Stirling motoru için de 120 kW’lık giriş sıcaklık değeri kabul edilmiştir. Soğutucu, ısıtıcı ve rejeneratörün ısı transfer alanları sırası ile 0,33 m2, 0,6 m2 ve 4,6 m2 olarak optimize edilmiştir. Stirling motorunun optimum termal verimliliği ve motor gücü % 47 ve 24 kW olarak belirlenmiştir. Hibrit motorun toplam termal verimliliği yalnız içten yanalı motorun sağladığı değer ile karşılaştırıldığında %6 artmıştır. Dizel motorun silindi içerisindeki ortalama gaz basıncının 12,5 bar olduğu durumda Stirling motorundaki çalışma akışkanının kütlesi 17 g olarak belirlenmiştir.

THERMAL PERFORMANCE ANALYSIS OF A STIRLING ENGINE ENERGIZED WITH EXHAUST GAS OF A DIESEL ENGINE

Theoretical and experimental investigations indicate that at high loads such as 3/4 throttling or more and high speeds such as 3000 rpm or more, the exhaust gas temperatures of the Internal Combustion engines are about 900-1000 K. The amount of heat wasted with exhaust gas of the Internal Combustion engines is equivalent to the power of them. By considering this feature of the Internal Combustion engines, a Hybrid engine consisting of an Internal Combustion (IC) engine and a gamma type Stirling engine was proposed and analyzed from the thermodynamic point of view. Hybrid engine is formed by combining the Stirling and IC engines via a common crankshaft and a common cylinder. The Internal Combustion engine may be a four stroke Diesel engine having an unconventional piston consisting of a crown and a rod. Via using this kind of pistons, two chambers are created in the same cylinder where one of them take part at above of the piston crown, while the other is taking part at below of the piston crown. In the combined engine presented here, the chamber at below of the piston crown is used as the expansion volume of the Stirling engine while the other chamber is being used as operational volume of the Diesel engine. In this study the thermodynamic performance of the Hybrid engine was investigated via using statistical values of common Diesel engines. For Stirling engine; 800 K heater surface temperature, 392 K cooler surface temperature, 800 W/m2K heat transfer coefficient in regenerator, 300 W/m2K heat transfer coefficient in cooler and heater, 250 rad/s engine speed and 12.5 bar air charging pressure were used as principal inputs. The output power of the Diesel engine was assumed to be 120 kW which provides 120 kW heat to Stirling engine. The heat transfer areas of cooler, heater and regenerator were optimized as 0.33 m2, 0.6 m2 and 4.6 m2 respectively. The optimum thermal efficiency and power of the Stirling engine were determined as 47 % and 24 kW. The total thermal efficiency of the combined engine is expected to increase 6 % compared to the stand-alone Internal Combustion engine. For 12.5 bar average gas pressure in the cylinder of Diesel engine, the working fluid mass in the Stirling engine was determined as 17g

___

  • Alfarawi S., Martin M.W., Mahmoud S. and Aldadah R.K., 2014, Thermal Analysis of Stirling Engine to Power Automotive Alternator Using Heat from Exhaust Gases, Energy Procedia, 61, 2395–2398. doi:10.1016/j.egypro.2014.12.013
  • Cullen B., McGovern J., Feidt M. and Petrescu S., 2009, Preliminary Modelling Results for an Otto Cycle/Stirling Cycle Hybrid-engine-based Power Generation System, 22nd International Conference on Efficiency, Cost, Optimization Simulation and Environmental Impact of Energy Systems (ECOS), Brazil, 2091-2100.
  • Hirata K. and Kwada M., 2005, Discussion of Marine Stirling Engine Systems, Proceedings of the 7th International Symposium on Marine Engineering, Tokyo.
  • Huang Y., Gao W. and Li G., 2016, Simulation And Experimental Study of The Otto and Stirling Combined Cycle, Journal of Renewable and Sustainable Energy, 8(3), 1-13. doi.org/10.1063/1.4948374
  • Ipci D. and Karabulut H., 2016, Thermodynamic and Dynamic Modeling of a Single Cylinder Four Stroke Diesel Engine, Applied Mathematical Modelling, 40 (5-6), 3925-3937. doi.org/10.1016/j.apm.2015.10.046
  • Izadiamoli N. and Sayyaadi H., 2018, Conceptual Design, Optimization and Assessment of a Hybrid Otto-Stirling Engine/Cooler for Recovering the Thermal Energy of the Exhaust Gasses for Automotive Applications, Energy Conversion and Management, 171, 1063–1082. doi.org/10.1016/j.enconman.2018.06.056 Jadhao J.S. and Thombare D.G., 2013, Review on Exhaust Gas Heat Recovery for IC Engine, International Journal of Engineering and Innovative Technology (IJEIT), 2(12), 96-100.
  • Karabulut H., Okur M. and Ozdemir A.O., 2019, Performance Prediction of a Martini Type of Stirling Engine, Energy Conversion and Management, 179, 1-12. doi: 10.1016/j.enconman. 2018.10.059
  • Li T., Tang D.W., Li Z., Du J., Zhou T. and Jia Y., 2012, Development and Test of a Stirling Engine Driven by Waste Gases for the Micro-CHP System, Applied Thermal Engineering, 33-34, 119-123. doi.org/10.1016/j.applthermaleng.2011.09.020
  • Noor A.M., Puteh R.C. and Srithar Rajoo S., 2014, Waste Heat Recovery Technologies in Turbocharged Automotive Engine – A Review, Journal of Modern Science and Technology, 2(1), 108-119.
  • Saxena S. and Ahmed M., 2017, Automobile Exhaust Gas Heat Energy Recovery Using Stirling Engine: Thermodynamic Model, SAE Technical Paper, 2017-26-0029.
  • Tanaka M., Yamashita I. and Chisaka F., 1990, Flow and Heat Transfer Characteristics of the Stirling Engine Regenerator in an Oscillating Flow, JSME International Journal, 33(2), 283-289. doi:10.1299/jsmeb1988.33.2_283
  • Wang K., Sanders S.R., Dubey S., Choo F.H. and Duan F., 2016, Stirling Cycle Engines for Recovering Low and Moderate Temperature Heat: A Review, Renewable and Sustainable Energy Reviews, 62, 89-108. doi:10.1016/j.rser.2016.04.031
  • Yu Y., Yuan Z., Ma J. and Li S., 2013, Design and Simulation of Exhaust Gas Waste Heat Recovery System of Gasoline Engine Based on Stirling Cycle, IEEE, 978-1-4799-3336, 855-859.