GLİSERİN ETERLERİNİN İKİNCİ NESİL BİYOYAKIT OLARAK DİZEL MOTORDA KULLANIMININ ARAŞTIRILMASI

Son yıllarda, büyük oranda petrol esaslı yakıtlar ile çalışan içten yanmalı motorlarda ikinci nesil biyoyakıtların kullanımına duyulan ilgi artmıştır. Bu çalışmada, biyodizel yan ürünü olan gliserinin katalitik dönüşümü ile üretilen gliserin eterlerinin dizel motorda ikinci nesil biyoyakıt olarak kullanımı deneysel olarak incelenmiştir. Gliserinin tert-bütanol ile eterifikasyonu sonucunda sentezlenen gliserin eterleri karışımı, %2 ve %5 hacimsel oranda dizel-biyodizel yakıt karışımı ile harmanlanmıştır. Dizel yakıtı ve %20 oranında biyodizel içeren dizel-biyodizel yakıt karışımı referans yakıt olarak kullanılmıştır. Test yakıtlarının önemli fiziksel yakıt özellikleri belirlenmiştir. Yakıta gliserin eterleri ilavesinin yakıtın viskozite, yoğunluk, ısıl değer, setan indisi ve destilasyon sıcaklıklarını düşürdüğü belirlenmiştir. Gliserin eterlerinin ilavesi ile dizel-biyodizel yakıt karışımının kinematik viskozitesinin %10-14 oranında azaldığı ve yakıtın destilasyon karakteristiğinin iyileştiği görülmüştür. Gerçekleştirilen motor deneyleri ile test yakıtlarının motorun performans, yanma karakteristikleri ve egzoz emisyonuna etkileri araştırılmıştır. Gliserin eterlerinin motorun özgül yakıt tüketimini ve HC emisyonlarını artırdığı; motorun termal verimini, CO, CO2, NOX ve is (duman koyuluğu) emisyonlarını azalttığı belirlenmiştir. Gliserin eterlerin en dikkat çekici etkisi NOX ve HC emisyonlarında görülmüştür. Gliserin eterleri NOX emisyonlarında yaklaşık %35-77 oranında önemli düşüşler sağlamış fakat aynı çalışma koşulları altında HC emisyonlarında yaklaşık %37-142 oranında bir artışa neden olmuştur. Yanma karakteristikleri açısından %2 oranında gliserin eterleri içeren yakıt karışımı, diğer test yakıtlarına göre daha iyi performans sergilemiştir. Tüm bulgular değerlendirildiğinde gliserin eterlerinin hacimsel %2 oranında dizel-biyodizel yakıt karışımı ile harmanlanması durumunda ikinci nesil biyoyakıt olarak dizel motorlarda kullanımının uygun olduğu belirlenmiştir.

INVESTIGATION OF THE USABILITY OF GLYCEROL ETHERS AS SECOND-GENERATION BIOFUEL IN DIESEL ENGINE

The interest in the use of second-generation biofuels in internal combustion engines which are still largely running with petroleum fuels has been increasing in recent years. In this study, the utilization of glycerol ethers produced by the catalytic conversion of biodiesel-originated glycerol as a second-generation biofuel in a diesel engine was experimentally investigated. The glycerol ethers mixture which was synthesized by the etherification of glycerol with tert- butyl alcohol was blended with the blend of diesel-biodiesel by 2% (v/v) and 5% (v/v). Neat diesel and a diesel-biodiesel fuel blend that contains 80% (v/v) diesel fuel and 20% (v/v) canola oil biodiesel were chosen as reference fuels. The important physical fuel properties of test fuels were determined. It was ascertained that the addition of glycerol ethers to the diesel-biodiesel mixture reduces fuel's viscosity, density, lower heating value, cetane index, and distillation temperatures. It was determined that glycerol ethers decreased the diesel-biodiesel fuel blend’s kinematic viscosity by 10-14% and improved the distillation characteristics. The impacts of test fuels on the engine’s performance, combustion characteristics, and exhaust emission were scrutinized by carried out the engine tests. It was seen that glycerol ethers increase the specific fuel consumption and HC emission while reducing thermal efficiency, CO, CO2, NOX, and soot (smoke opacity) emission. The most appealing impact of glycerol ethers was witnessed to NOx and HC emissions. Glycerol ethers promoted significant reductions in NOX emissions by approximately 35-77%, however, under the same operating conditions, an increase in HC emissions by approximately 37-142% was observed. In terms of combustion characteristics, the fuel mixture containing 2% (v/v) glycerol ethers performed better than other test fuels. Based on experimental results it was concluded that the glycerol ethers mixture is suitable for use as a second-generation biofuel by 2% (v/v) blending ratio with diesel-biodiesel blend in diesel engines

___

  • Aguado-Deblas L., Estevez R., Russo M., La Parola V., Bautista F. M. and Testa M. L., 2020, Microwave-Assisted Glycerol Etherification Over Sulfonic Acid Catalysts, Materials, 13, 7, 1584.
  • Akbarian E. and Najafi B, 2019, A novel fuel containing glycerol triacetate additive, biodiesel and diesel blends to improve dual-fuelled diesel engines performance and exhaust emissions, Fuel, 236, 666–676.
  • Altun Ş., 2014, Effect of the degree of unsaturation of biodiesel fuels on the exhaust emissions of a diesel power generator, Fuel, 117, PART A, 450–457.
  • Altun Ş., Bulut H. and Öner C., 2008, The comparison of engine performance and exhaust emission characteristics of sesame oil-diesel fuel mixture with diesel fuel in a direct injection diesel engine, Renewable Energy, 33, 8, 1791–1795.
  • ASTM., 2020, ASTM D7467-20a, Standard Specification for Diesel Fuel Oil, Biodiesel Blend (B6 to B20), ASTM International, West Conshohocken, PA, 2020.
  • Atmanli A. and Yilmaz N., 2020, An experimental assessment on semi-low temperature combustion using waste oil biodiesel/C3-C5 alcohol blends in a diesel engine, Fuel, 260, 116357.
  • Beatrice C., Di Blasio G., Guido C., Cannilla C., Bonura G. and Frusteri, F., 2014, Mixture of glycerol ethers as diesel bio-derivable oxy-fuel: Impact on combustion and emissions of an automotive engine combustion system, Applied Energy, 132, 236–247.
  • Beatrice C., Di Blasio G., Lazzaro M., Cannilla C., Bonura, G., Frusteri F. and Bartocci P., 2013, Technologies for energetic exploitation of biodiesel chain derived glycerol: Oxy-fuels production by catalytic conversion, Applied Energy, 102, 63–71.
  • Beatrice C., Di Blasio G., Lazzaro M., Mancaruso E., Marialto R., Sequino L. and Vaglieco B. M., 2015, Investigation of the combustion in both metal and optical diesel engines using high-glycerol ethers/diesel blends, International Journal of Engine Research, 16, 1, 38–51.
  • Behçet R., Oktay H., Çakmak A., and Aydin H., 2015, Comparison of exhaust emissions of biodiesel-diesel fuel blends produced from animal fats, Renewable and Sustainable Energy Reviews, Vol. 46, pp. 157–165.
  • Behr A. and Obendorf L., 2002, Development of a Process for the Acid-Catalyzed Etherification of Glycerine and Isobutene Forming Glycerine Tertiary Butyl Ethers, Engineering in Life Sciences, 2(7), 185.
  • Bohon M. D., Metzger B. A., Linak W. P., King C. J. and Roberts W. L., 2011, Glycerol combustion and emissions, Proceedings of the Combustion Institute, 33, 2, 2717–2724.
  • Bozkurt Ö. D., Yılmaz F., Bağlar N., Çelebi S. and Uzun, A., 2019, Compatibility of di- and tri-tert-butyl glycerol ethers with gasoline, Fuel, 255, 115767.
  • Çakmak A. and Bilgin, A., 2017, Performance and Emissions of a Single Cylinder CI Engine Running on Corn Oil Methyl Ester-Diesel Blends, Journal of Clean Energy Technologies, 5, 4, 280–284.
  • Çakmak A. and Özcan H., 2020, Biofuel additive production from glycerol and determination of its effect on some fuel properties, SN Applied Sciences, 2, 10, 1637.
  • Çakmak A. and Özcan H., 2018, Benzin İçin Oksijenli Yakıt Katkıları, Journal of Polytechnic, 21, 4, 831–840.
  • Cannilla C., Bonura G., Maisano S., Frusteri L., Migliori M., Giordano G. and Frusteri F., 2020, Zeolite-assisted etherification of glycerol with butanol for biodiesel oxygenated additives production, Journal of Energy Chemistry, 48, 136–144.
  • Cannilla Catia, Bonura G., Frusteri L., and Frusteri F., 2015, Batch reactor coupled with water permselective membrane: Study of glycerol etherification reaction with butanol, Chemical Engineering Journal, 282, 187–193.
  • Chaudhary V. and Gakkhar R. P., 2021, Exergy analysis of small DI diesel engine fueled with waste cooking oil biodiesel, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 43, 2, 201-215.
  • Cornejo A., Barrio I., Campoy M., Lázaro J. and Navarrete, B., 2017, Oxygenated fuel additives from glycerol valorization. Main production pathways and effects on fuel properties and engine performance: A critical review, Renewable and Sustainable Energy Reviews, 79, 1400–
  • Datta A. and Mandal B. K., 2017, Engine performance, combustion and emission characteristics of a compression ignition engine operating on different biodiesel-alcohol blends. Energy, 125, 470–483.
  • Emiroğlu A. O. and Şen M., 2018, Combustion, performance and exhaust emission characterizations of a diesel engine operating with a ternary blend (alcohol-biodiesel-diesel fuel). Applied Thermal Engineering, 133, 371–380.
  • Fatimah I., Sahroni I., Fadillah G., Musawwa M. M., Mahlia T. M. I. and Muraza O., 2019, Glycerol to Solketal for Fuel Additive: Recent Progress in Heterogeneous Catalysts, Energies, 12, 15, 2872.
  • Frusteri F., Arena F., Bonura G., Cannilla, C., Spadaro L. and Di Blasi O., 2009, Catalyticetherification of glycerol by tert-butyl alcohol to produce oxygenated additives for diesel fuel, Applied Catalysis A: General, 367, 1–2, 77–83.
  • Frusteri F., Cannilla C., Bonura G., Spadaro L., Mezzapica A., Beatrice C. and Guido, C., 2013, Glycerol ethers production and engine performance with diesel/ethers blend, Topics in Catalysis, 56, 1–8, 378–383.
  • Gaurav N., Sivasankari S., Kiran G. S., Ninawe A. and Selvin J., 2017, Utilization of bioresources for sustainable biofuels: A Review, Renewable and Sustainable Energy Reviews, 73, 205–214.
  • Ghosh P., Westhoff P. and Debnath D., 2019, Biofuels, food security, and sustainability, In Biofuels, Bioenergy and Food Security, 211–229.
  • Goncalves M., Castro C. S., Oliveira L. C. A. and Carvalho, W. A., 2015, Green acid catalyst obtained from industrial wastes for glycerol etherification, Fuel Processing Technology, 138, 695–703.
  • Gülüm M., Onay F. K., Bilgin A., 2018, Comparison of viscosity prediction capabilities of regression models and artificial neural networks, Energy, 161, 361–369.
  • Gülüm M., Bilgin A. and Çakmak A., 2015, Comparison of optimum reaction parameters of corn oil biodiesels produced by using sodium hydroxide (NAOH) and potassium hydroxide (KOH), Journal of the Faculty of Engineering and Architecture of Gazi University, 30, 3.
  • Heywood J. B., 1988, Internal combustion engine fundamentals, New York: McGraw-Hill.
  • Holman J. P., 2001, Experimental methods for engineers. In McGraw-Hill series in mechanical engineering (7th ed.), Boston.
  • Jaecker-Voirol A., Durand I., Hillion G., Delfort B. and Montagne X., 2008, Glycerin for New Biodiesel Formulation. Oil and Gas Science and Technology - Revue de l’IFP, 63, 4, 395–404.
  • Klepáčová K., Mravec D., and Bajus M., 2006, Etherification of glycerol with tert-butyl alcohol catalysed by ion-exchange resins, Chemical Papers, 60(3), 224–230.
  • Königsson F., Kuyper J., Stalhammar P. and Angstrom H.-E., 2013, The influence of crevices on hydrocarbon emissions from a diesel-methane dual fuel engine. SAE International Journal of Engines, 6, 2, 751–765.
  • Kuszewski H., 2018, Effect of adding 2-ethylhexyl nitrate cetane improver on the autoignition properties of ethanol–diesel fuel blend – Investigation at various ambient gas temperatures, Fuel, 224, 57–67.
  • Lapuerta M., Ramos Á., Rubio S. and Estévez C., 2019, Optimization of a diesel engine calibration for operating with a residual glycerol-derived biofuel, International Journal of Engine Research, 146808741989153.
  • Lee R. A. and Lavoie J.-M., 2013, From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Animal Frontiers, 3, 2, 6–11.
  • Mahla S. K., Das L. M. and Babu M. K. G., 2010, Effect of EGR on performance and emission characteristics of natural gas fueled diesel engine, Jordan Journal of Mechanical and Industrial Engineering, 4, 4, 523–530.
  • Maurya R. K., Maurya and Luby., 2019, Reciprocating Engine Combustion Diagnostics, Springer.
  • Milano J., Ong H. C., Masjuki H. H., Chong W. T., Lam M. K., Loh P. K. and Vellayan V., 2016, Microalgae biofuels as an alternative to fossil fuel for power generation, Renewable and Sustainable Energy Reviews, 58, 180–197.
  • Monteiro M. R., Kugelmeier C. L., Pinheiro R. S., Batalha M. O. and da Silva César A., 2018, Glycerol from biodiesel production: Technological paths for sustainability, Renewable and Sustainable Energy Reviews, 88, 109–122.
  • Mousavi S. M., Saray R. K., Bahlouli K., Poorghasemi K., Maghbouli A. and Sadeghlu A., 2019, Effects of pilot diesel injection strategies on combustion and emission characteristics of dual-fuel engines at part load conditions, Fuel, 258, 116153.
  • Nandiwale K. Y., Patil S. E. and Bokade V. V., 2014, Glycerol Etherification using n -Butanol to Produce Oxygenated Additives for Biodiesel Fuel over H-Beta Zeolite Catalysts, Energy Technology, 2, 5, 446–452.
  • Nanthagopal K., Ashok B., Saravanan B., Patel D., Sudarshan B. and Aaditya Ramasamy R., 2018, An assessment on the effects of 1-pentanol and 1-butanol as additives with Calophyllum Inophyllum biodiesel, Energy Conversion and Management, 158, 70–80.
  • Nguyen Q., Bowyer J., Howe J., Bratkovich S., Groot H., Pepke E. and Fernholz K., 2017, Global production of second generation biofuels: Trends and influences, Dovetail Partners Inc.
  • Noureddini H., Dailey W. R. and Hunt B. A., 1998, Production of ethers of glycerol from crude glycerol-the by-product of biodlesel production, Papers in Biomaterials, 18.
  • OECD, 2019, OECD-FAO AGRICULTURAL OUTLOOK 2019-2028, OECD.
  • OECD/FAO, 2018, OECD Agriculture statistics (database). Retrieved from http://dx.doi.org/10.1787/agr-outl-data-en.
  • Özbay N., 2013, Gliserin Eterlerinin Sentezi ve Reaksiyon Kinetiğinin İncelenmesi , Doktora Tezi, Gazi Üniversitesi, Fen Bilimleri Enstitüsü, 54, Ankara.
  • Ozbay N., Oktar N., Dogu G. and Dogu T., 2010, Conversion of Biodiesel By-Product Glycerol to Fuel Ethers over Different Solid Acid Catalysts, International Journal of Chemical Reactor Engineering, 8, 1, Ozbay N., Oktar N., Dogu G. and Dogu T., 2011, Effects of sorption enhancement and isobutene formation on etherification of glycerol with tert-butyl alcohol in a flow reactor, Industrial and Engineering Chemistry Research, 51(26), 8788–8795.
  • Ozbay N., Oktar N., Dogu G. and Dogu T., 2013, Activity Comparison of Different Solid Acid Catalysts in Etherification of Glycerol with tert-Butyl Alcohol in Flow and Batch Reactors, Topics in Catalysis, 56(18–20), 1790–1803.
  • Pinto B. P., de Lyra J. T., Nascimento J. A. C. and Mota C. J. A., 2016, Ethers of glycerol and ethanol as bioadditives for biodiesel, Fuel, 168, 76–80.
  • Pulkrabek W. W., 1997, Engineering Fundamentals of the Internal Combustion Engine,, New Jersey: Prentice Hall, Inc.
  • Queirós P., Costa M. and Carvalho R. H., 2013, Co-combustion of crude glycerin with natural gas and hydrogen, Proceedings of the Combustion Institute, 34, 2, 2759–2767.
  • Rahmat N., Abdullah A. Z. and Mohamed A. R., 2010, Recent progress on innovative and potential technologies for glycerol transformation into fuel additives: A critical review, Renewable and Sustainable Energy Reviews, 14, 3, 987–1000.
  • Reşitoğlu İ. A., Altinişik K. and Keskin A., 2015, The pollutant emissions from diesel-engine vehicles and exhaust aftertreatment systems, Clean Technologies and Environmental Policy, 17, 1, 15–27.
  • Ruan R., Zhang Y., Chen P., Liu S., Fan L., Zhou N. and Li B., 2019, Biofuels: Introduction. In Biomass, Biofuels, Biochemicals: Biofuels: Alternative Feedstocks and Conversion Processes for the Production of Liquid and Gaseous Biofuels, 3–43.
  • Safgönül B., Ergeneman M., Arslan H. E and Soruşbay, C., 2013, İçten Yanmalı Motorlar, İstanbul: Birsen Yayınevi.
  • Sayin C., Ilhan M., Canakci M. and Gumus M., 2009, Effect of injection timing on the exhaust emissions of a diesel engine using diesel-methanol blends, Renewable Energy, 34, 5, 1261–1269.
  • Şi̇mşek D., Oral F. and Çolak N. Y., 2019, Tek Silindirli Buji Ateşlemeli Motorlarda Benzin-Propanol-Hekzan Yakıt Karışımlarının Motor Performans ve Emisyonlarına Etkisi, J. of Thermal Science and Technology, 39, 81–89.
  • Sivalakshmi S., Balusamy T., Datta A. and Mandal B. K., 2012, Influence of Ethanol Addition on a Diesel Engine Fuelled with Neem Oil Methyl Ester, International Journal of Green Energy, 9, 3, 470–483.
  • Solmaz H., Yamik H., Uyumaz A., Polat S. and Yilmaz E., 2016, An Experimental Study on the Effects of Diesel and Jet-A1 Fuel Blends on Combustion, Engine Performance, and Exhaust Emissions in a Direct Injection Diesel Engine, J. of Thermal Science and Technology, 36, 2, 51–60.
  • Spooner-Wyman J. K., Appleby D. B. and Yost D. M., 2003, Evaluation of Di-Butoxy Glycerol (DBG) for Use As a Diesel Fuel Blend Component, SAE Technical Paper, No. 2003-0.
  • Tan H. W., Abdul Aziz A. R., and Aroua M. K., 2013, Glycerol production and its applications as a raw material: A review. Renewable and Sustainable Energy Reviews, 27, 118–127.
  • Turns S. R., 1996, Introduction to combustion, McGraw-Hill Companies.
  • Ushakov S., and Lefebvre N., 2019, Assessment of Hydrotreated Vegetable Oil (HVO) Applicability as an Alternative Marine Fuel Based on Its Performance and Emissions Characteristics, SAE International Journal of Fuels and Lubricants, 12, 2, 109–121.
  • Uyumaz A., Aksoy F., Akay F., Baydir Sükrü Ayhan, Solmaz H., Yilmaz E. and Calam A., 2019, An Experimental Investigation on The Effects of Waste Olive Oil Biodiesel on Combustion, Engine Performance and Exhaust Emissions. International Journal of Automotive Engineering and Technologies, 8, 3, 103–116.
  • Veiga P. M., Gomes A. C. L., Veloso C. O. and Henriques C. A., 2017, Acid zeolites for glycerol etherification with ethyl alcohol: Catalytic activity and catalyst properties, Applied Catalysis A: General, 548, 2–15.
  • Viswanadham N. and Saxena S. K., 2013, Etherification of glycerol for improved production of oxygenates. Fuel, 103, 980–986. https://doi.org/10.1016/J.FUEL.2012.06.057
  • Vlad E. and Bildea C. S., 2012, Reactive distillation-A viable solution for etherification of glycerol with tert-butyl alcohol, Chemical Engineering Transactions, 29.
  • Wang Z., Li L., Wang J., Reitz R. D., Soto F., Alves M.and Yao M., 2018, Effect of biodiesel saturation on soot formation in diesel engines, Fuel Processing Technology,
  • Wu Y., Wang P., Muhammad Farhan S., Yi J. and Lei L., 2019, Effect of post-injection on combustion and exhaust emissions in DI diesel engine. Fuel, 258, 116131.
  • Yang F., Hanna M. A. and Sun R., 2012, Value-added uses for crude glycerol--a byproduct of biodiesel production, Biotechnology for Biofuels, 5, 1, 13.
  • Yeşilyurt M. K., Arslan M. and Eryilmaz T., 2018, Biyodizel-Dizel Yakıt Karışımlarına Etanol Katılmasının Performans, Yanma ve Emisyon Karakteristiklerine Etkisinin Deneysel İncelenmesi, J. of Thermal Science and Technology, 38, 129–150.
  • Zheng Z., Wang X. F., Zhong X., Hu B., Liu H. and Yao M., 2016, Experimental study on the combustion and emissions fueling biodiesel/n-butanol, biodiesel/ethanol and biodiesel/2,5-dimethylfuran on a diesel engine. Energy, 115, 539–549.