Analysis of inward melting of spheres subject to convection and radiation

Bu çalışmada taşınım ve ışınıma maruz kalan bir kürenin erimesi problemi incelenmiştir. Sıvı faza ait ısı iletim denklemi ile ara yüzey enerji dengesi denklemleri boyutsuz olarak ifade edildikten sonra, hareketli ara yüzey nedeniyle değişken olan problem bölgesi Landau dönüşümü kullanılarak sabitlenmiştir. Boyutsuz denklemler ve sınır koşulları; ara yüzey hızının Biot ve Stefan sayıları, iletim-ışınım parametresi ve boyutsuz sıcaklıklara bağlı olduğunu göstermiştir. Bu yeni sabitlenmiş koordinatlarda ifade edilen problem sonlu farklar yöntemi ile çözülmüştür. Elde edilen sayısal model kullanılarak, erime işlemi üzerine problem parametrelerinin etkisi araştırılmış ve sonuçlar grafiklerle ifade edilmiştir.

Taşınım ve ışınıma maruz kalan bir kürenin içe doğru erimesinin analizi

In the present study, inward spherical melting of a solid subject to convection and radiation initially at the fusion temperature has been investigated. The governing equations for liquid phase and the interface have been expressed in dimensionless form and then, computational domain has been fixed using the well-known Landau transformation. The dimensionless governing equations showed that the velocity of the interface depends on Biot number, Stefan number, conduction-radiation parameter and dimensionless temperatures. The dimensionless liquid phase and interface equations have been solved numerically using a finite difference method. Employing the developed numerical model, the effects of the problem parameters on melting process have been investigated and results have been presented graphically.

___

  • 1.Bilir, L., and İlken, Z., Total Solidification Time of a Liquid Phase Change Material Enclosed In Cylindrical/Spherical Containers, Applied Thermal Engineering, 25, 1488-1502, 2005.
  • 2.Bulunti, B., Küresel Koordinatlarda İçe Doğru Erime Probleminin Analizi, Yüksek Lisans Tezi, Atatürk Üniversitesi Fen Bilimleri Enstitüsü, Erzurum, 2003.
  • 3.Caldwell, J. and Kwan, Y.Y., On the Perturbation Method for the Stefan Problem with Time-Dependent Boundary Conditions, Int. Journal of Heat and Mass Transfer, 46, 1497-1501, 2003.
  • 4.Cho, S.H., and Sunderland, J.E., Phase Change of Spherical Bodies, International Journal of Heat and Mass Transfer, 13, 1231-1233, 1970.
  • 5.Chuang, Y.K., and Ehrich, O., On the Integral Technique for Spherical Growth Problems, International Journal of Heat and Mass Transfer, 17, 945-953, 1973.
  • 6.Chung, B.T.F., and Yeh, L.T., Solidification and Melting of Materials Subject to Convection and Radiation, Journal of Spacecraft, 12, 329-333, 1975.
  • 7.Crank, J., Free and Moving Boundary Problems, Clarendon Press, 1984.
  • 8.Dewynne, J.N., and Hill, J.M., On an Integral Formulation for Moving Boundary Problems, Quart. Appl. Math, 42, 443-455, 1984.
  • 9.Fomin, S.A. and Saitoh, T.S., Melting of Unfixed Material in Spherical Capsule with Non-isothermal Wall, International Journal of Heat and Mass Transfer 42, 4197-4205, 1999.
  • 10.Goodling, J.S. and Khader, M.S., Inward Solidification with Radiation-Convection Boundary Condition, Journal of Heat Transfer, 96, 114-115, 1974.
  • 11.Hill, J.M., and Kucera, A., Freezing a Saturated Liquid Inside a Sphere, International Journal of Heat and Mass Transfer, 26, 1631-1637, 1983.
  • 12.Huang, C.L., and Shih, Y.P., A perturbation Method for spherical and cylindrical solidification, Chem. Eng. Sc., 30, 897-906, 1975.
  • 13.Ismail, K.A.R., and Henriquez, J.R., Solidification of PCM Inside a Spherical Capsule, Energy Conversion and Management, 41, 173-187, 2000.
  • 14.Landau, H.G., Heat conduction in a melting solid, Quart. Appl. Math, 8, 81-94, 1950
  • 15.Lunardini, V.J., Heat Transfer in Cold Climates, Van Nostrand Reinhold Company, 1979.
  • 16.Moore, F.E., and Bayazitoglu Y., Melting within a Spherical Enclosure, Journal of Heat Transfer, 104, 19- 23, 1982.
  • 17.Özışık, M.N., Heat Conduction, Wiley & Sons, 1980.
  • 18.Pedroso, R.I., and Domoto, G.A., Inward Spherical Solidification Solution by the Method of Strained coordinates, International Journal of Heat and Mass Transfer, 16, 1037-1043, 1973a.
  • 19.Pedroso, R.I., and Domoto, G.A., Perturbation Solutions for Spherical Solidification of Saturated Liquids, Journal of Heat Transfer, 95, 42-46, 1973b.
  • 20.Pepper, D.W., and Baker, A.J., Finite Differences versus Finite Elements: In Handbook of Numerical Heat Transfer, W.J. Minkowycz et al. (eds.), Wiley & Sons, 1993.
  • 21.Riley, D.S., and Smith, F.T., The Inward Solidification of Spheres and Circular Cylinders, International Journal of Heat and Mass Transfer, 17, 1507-1516, 1974.
  • 22.Tarzia, D.A., Turner, C.V., Estimation of the Occurrence of the Phase-Change Process in Spherical Coordinates, Int. Comm. Heat Mass Transfer, 26, 559- 568, 1999.
  • 23.Yan, M.M. and Huang, P.N.S., Perturbation Solutions to Phase Change Problem Subject to Convection and Radiation, Journal of Heat Transfer, 101, 96-100, 1979.
  • 24.Yeh, L.T. and Chung, B.T.F., A Variational Analysis of Freezing or Melting in a Finite Medium Subject to Radiation and Convection, Journal of Heat Transfer, 101, 592-597, 1979.
Isı Bilimi ve Tekniği Dergisi-Cover
  • ISSN: 1300-3615
  • Yayın Aralığı: Yılda 2 Sayı
  • Başlangıç: 1977
  • Yayıncı: TÜRK ISI BİLİMİ VE TEKNİĞİ DERNEĞİ