Effect of Pre-/ Postnatal Hypoxia on Pyruvate Kinase in Rat Brain

The effect of hypoxic hypoxia on the pyruvate kinase (PK) activity in the brain structures of white rats during ontogenesis in a comparative aspect has been studied. A clear dependence could be established in the increase of PK activity from an oxygen deficient state, the age of animals, the studied structure of the brain and the prolonged effect of hypoxia. Prenatal exposure to hypoxia has shown that the PK activity is not restored to the control value level in postnatal development. After postnatal exposure to hypoxia with increasing age in animals, the PK activity gets more resistant to the effect of stress-factors. The data analysis indicates that the increasing exhaustion of energy resources necessary for normal cell functioning makes an important contribution to the development of hypoxic state and the insufficiency of mitochondrial oxidative phosphorylation, the main energy forming system which underlies these disturbances. Energy-shortage, in its turn causes a variety of secondary negative metabolic alterations and gives rise to free radical oxidation in the cells. An explanation of the obtained results suggested can be considered as an evidence of the realization of the biological effect of hypoxia through the oxidative mechanism.

Effect of Pre-/ Postnatal Hypoxia on Pyruvate Kinase in Rat Brain

The effect of hypoxic hypoxia on the pyruvate kinase (PK) activity in the brain structures of white rats during ontogenesis in a comparative aspect has been studied. A clear dependence could be established in the increase of PK activity from an oxygen deficient state, the age of animals, the studied structure of the brain and the prolonged effect of hypoxia. Prenatal exposure to hypoxia has shown that the PK activity is not restored to the control value level in postnatal development. After postnatal exposure to hypoxia with increasing age in animals, the PK activity gets more resistant to the effect of stress-factors. The data analysis indicates that the increasing exhaustion of energy resources necessary for normal cell functioning makes an important contribution to the development of hypoxic state and the insufficiency of mitochondrial oxidative phosphorylation, the main energy forming system which underlies these disturbances. Energy-shortage, in its turn causes a variety of secondary negative metabolic alterations and gives rise to free radical oxidation in the cells. An explanation of the obtained results suggested can be considered as an evidence of the realization of the biological effect of hypoxia through the oxidative mechanism.

___

  • Shvyreva, E., Graf, A., Maslova, M., Maklakova, A., Sokolova, N. (2017). Acute hypoxic stress in the critical periods of embryogenesis: the influence on the offspring developmentin the early postnatal period. European Neuropsycho pharmacology, ed. Elsevier BV (Netherlands), 27(9), 105. https://istina.msu.ru/publications/article/74505542/
  • Menshchikova, E.B., Lankin, V.Z., Zenkov, N.K. (2006). In: Oxidative stress. Proxidants and antioxidants. M.: “Slovo”, 556 p. https://www.twirpx.com/file/908751/
  • Anisimov, V.N. (2008). Molecular and Physiological Mechanisms of Aging., v1, 481 p., St. Petersburg. http://www.gerontology.ru/PDF_library/Book-Anisimov_t-1-2008.pdf
  • Zhuravin, I.A., Tumanova, N.L., Ozirskaya, E.V., Vasiliev, D.S., Dubrovskaya, N.M. (2007). Formation of structural and ultrastructural organization of striatum in postnatal ontogenesis of rats with changing conditions of their embryonic development. J.Evol. Biochim. Fiziol., 43(2), 229-239. DOI 10.1134/50022093007020123
  • Mishra, O.P., Delivoria-Papadopoulos, M. (1999). Cellular mechanisms of hypoxic injury in the developing brain. Brain Res Bull., 48(3), 233-238. PMID 10229330; https://www.ncbi.nlm.nih.gov/pubmed/10229330
  • Pellerin, L., Magistretti, P.J. (2003). How to balance the brain energy budget while spending glucose differently. J. Physiology, 546(2), 325. DOI: 10.1113/jphysiol.2002.035105. PMCID: PMC2342533. PMID: 12527720.
  • Semenza, G.L. (2012). Hypoxia-inducible factors in physiology and medicine. Cell. Feb 3; 148(3), 399-408. DOI: 10.1016/j.cell.2012.01.021.
  • Рашидова, А.М., Гашимова, У.Ф. (2017). Зависимость активности ферментов ЛДГ и ПК в тканях структур головного мозга белых крыс от уровня гипоксии, перенесенной на стадии органогенеза ж.Известия НАНА, 72(1), 121-125. http://www.jbio.az/uploads/journal/e70929ecd0b2172f1485c15aaed81c57.pdf
  • Belova, N.G., Zhelev, V.A., Agarkova, L.A., Kolesnikova I.A., Gabitova N.A. (2008). Features of energy metabolism of cells in the mother-fetus-newborn system in pregnancy complicated by gestosis. Сибирский медицинский журнал, 4-1(23), 7-10.
  • Лукьянова, Л. Д. (2001). Митохондриальные дисфункции при гипоксии -типовой патологический процесс.//Митохондрии в патологии. Материалы всероссийского рабочего совещания.-Пущино, 2001.-С. 66-67; https://readera.ru/metabolicheskaja-moduljacija-protivoopuholevogo-jeffekta-citostatikov-v-14045499
  • Prabhakar, N.R. (2013). Sensing hypoxia: physiology, genetics and epigenetics. J. Physiol., 591(9), 2245-2257. DOI: 10.1113/jphysiol.2012.247759
  • Zamenina, E.V., Panteleeva, N.I., Roshchevskaya, I.M. (2017). The heart electric field of man during ventricularrepolarization under hypoxic influence. Russian J. of Physiology,103(11). 1330-1339. https://elibrary.ru/item.asp?id=30511338
  • Chinopoulos, C., Zhang, S.F., Thomas, B., Ten, V., Starkov, A.A. (2011). Isolation and functional assessment of mitochondria from small amounts of mouse brain tissues. Methods Mol. Biol., 793, 311-324. DOI: 10.1007/978-1-61779-328-8_20
  • Bergmeyer, H.U. (1975). Biochemica information. In: Methods of Enzymatic Analysis, II. 82-83. https://books.google.az/books?id=jgIlBQAAQBAJ&pg=PA157&dq=Bergmeyer+H.U.+(1975).+Biochemica+information.&hl=ru&sa=X&ved=0ahUKEwiNnt3b06PcAhUDlSwKHWbJDQgQ6AEILDAB#v=onepage&q=Bergmeyer%20H.U.%20(1975).%20Biochemica%20information.&f=false
  • Kruger, N.J. (2009). The Bradford method for protein quantitation. The protein Protocols Handbook, 3-rd ed. Ed. by J.M.Walker, Humana press Inc., Totowa N.J.,: 17-24. https://www.springer.com/gb/book/9781588298805
  • Fatemi, A., Wilson, M.A., Johnston, M.V. (2009). Hypoxic Ischemic Encephalopathy in the Term Infant. Clin Perinatol., 36(4), 835. DOI: 10.1016/j.clp.2009.07.011
  • Граф, А.В., Гончаренко, Е.Н., Соколова, Н.А., Ашмарин, И.П. (2008). Антенатальная гипоксия: участие в развитии патологий ЦНС в онтогенезе. Нейрохимия, 25(1-2), 11-16. http://naukarus.com/antenatalnaya-gipoksiya-uchastie-v-razvitii-patologiy-tsns-v-ontogeneze
  • Zhuravin, I.A., Tumanova, N.L., Vasilyev, D.S. (2009). Change in adaptive mechanisms of the brain in the ontogenesis of rats underwent prenatal hypoxia. Reports of the Academy of Sciences, 425(1), 123-125. http://naukarus.com/izmenenie-adaptivnyh-mehanizmov-mozga-v-ontogeneze-krys-perenesshih-prenatalnuyu-gipoksiyu
  • Stroyev, S.A., Tyulkova, E.I., Vataeva, L.A., Samoilov, M.O., Pelto-Huikko, M.T. (2011). Effect of prenatal hypoxia on the expression of thioredoxin-1 in the rat hippocampus at different times. Нейрохимия, 28(3), 226-231. https://elibrary.ru/item.asp?id=16655351
  • Speakman, J. R., Selman, C. (2011). The free-radical damage theory: Accumulating evidence against a simple link of oxidative stress to ageing and lifespan. BioEssays: news and reviews in molecular, cellular and developmental biology, 33(4), 255-259. DOI:10.1002/bies.201000132.
  • Harman, D. (2006). Free Radical Theory of Aging: An Update Increasing the Functional Life Span. Annals of the NY Academy of Sciences, 10 May: 10-21. DOI:10.1196/annals.1354.003
  • Huseynov, A. H. (2017) Mechanism of impaсt of hypoxia on general activity of brain cortex. Russian Journal of Physiology, 103(11), 1209-1224. https://elibrary.ru/item.asp?id=30511329
  • Ballanyi, K.J. (2004). Protective role of neuronal KATP channels in brain hypoxia. J. Exp. Biol., 207, 3201-3212. DOI: 10.1242/jeb.01106
  • Nieber, K. (1999). Hypoxia and neuronal function under in vitro conditions. Pharmacol. Ther., 82(1), 71-86. PMID: 10341358; https://www.ncbi.nlm.nih.gov/pubmed/10341358
  • van Os, S., Ruitenbeek, W., Hopman, J., van de Bor, M. (2006). Excitatory amino acid release and electrocortical brain activity after hypoxemia in near–term lambs. Brain Dev., 28, 380-388. DOI: 10.1016/j.braindev.2005.12.002
  • Luhmann, H.J., Kral, T., Heinemann, U. (1993). Influence of hypoxia on excitation and GABA–ergic inhibition in mature and developing rat neocortex. Exp. Brain Res., 97, 209-224. https://link.springer.com/article/10.1007/BF00228690
  • Nolan P.C., Waldrop T.G.(1996). In vitro responses of VLM neurons to hypoxia after 320 normobaric hypoxic acclimatization. Respiration Physiology, 105(1-2), 23-33; DOI.ORG/10.1016/0034-5687(96)00033-3; https://www.sciencedirect.com/science/article/pii/0034568796000333
  • Hanse E., Taira T., Lauri S., Groc L. (2009). Glutamate synapse in developing brain an integrative perspective beyond the silent state. Trends Neurоsci., 32(10), 532-537. DOI: 10.1016/j.tins.2009.07.003. Epub 2009 Sep 4.
  • ГоранчукВ.В., СаповаН.И., ИвановА.О. (2003). Гипокситерапия. Изд-во ЭЛБИ-СПб.; 536 с. https://www.mmbook.ru/catalog/raznoe/101625-detail
  • Лукьянова, Л.Д., Ушаков, И.Б. (2004). Проблемы гипоксии: молекулярные, физиологические и медицинские аспекты. М., Истоки., 584 с., https://elibrary.ru/item.asp?id=19523467
International Journal of Secondary Metabolite-Cover
  • Başlangıç: 2014
  • Yayıncı: İzzet KARA
Sayıdaki Diğer Makaleler

Electromagnetic radiation of low intensity as a factor of change of phenolic compounds content

Svetlana SHYSH, Zhanna MAZETS, Hanna SHUTAVA, Olga SYSHA, Yulia GORGUN

Analysis of Phytochemical Composition and Biological Activities of Verbascum cheiranthifolium var. cheiranthifolium stem and flowers

Abdullah DALAR, Oruc ALLAHVERDİYEV, Aydin Sukru BENGU

Plant Taxa Used in the Treatment of Diabetes in Van Province, Turkey

Abdullah DALAR

Effects of NaCl applications on root growth and secondary metabolite production in madder (Rubia tinctorum L.) root cultures

Tunhan DEMİRCİ, Özlem ARAS AŞCI, Nilgün GÖKTÜRK BAYDAR

Cold Resistance of Plant Species of the Genus Vitex l. Introduced in M.M. GRYSHKO National Botanic Garden of NAS of Ukraine

Nataliia LEVCHYK, Volodymyr LEVON

Molecular identification and phytochemical profiling of kamiling (wild toxic plant) using thin layer chromatography

Dana Theresa C. DE LEON, John Dave C. AQUİNO, Mary Jhane G. VALENTİNO, Jerwin R. UNDAN

Antioxidative Defence Mechanisms in Tomato (Lycopersicum esculentum L.) Plants Sprayed with Different Pesticides and Boron compounds

Köksal KÜÇÜKAKYÜZ, Mahmut YILDIZTEKİN, Hasan Sungur CİVELEK, Said NADEEM, Atilla Levent TUNA

Biological Activities of Wild Asparagus (Asparagus acutifolius L.)

Arzu KASKA, Ramazan MAMMADOV, Nahide DENİZ

Investigation of Chemical Composition, Antioxidant, Anticholinesterase and Anti-urease activities of Euphorbia helioscopia

Mehmet Emin DURU, Ebru DEVECİ, Gülsen TEL ÇAYAN

Effect of Pre-/ Postnatal Hypoxia on Pyruvate Kinase in Rat Brain

Afag M. RASHİDOVA