Biological Activities of Wild Asparagus (Asparagus acutifolius L.)

Asparagus acutifolius L. (wild asparagus) is an edible plant species that is widely distributed throughout the Mediterranean. This study was designed to investigate the phenolic compounds, antioxidant, and cytotoxic activities of ethanol and water extracts of different parts (fruits and leaves) of A. acutifolius. The antioxidant activities of these extracts were analyzed using scavenging methods (DPPH and ABTS scavenging activity), the β-carotene/linoleic acid test system and the phosphomolybdenum method. Among the evaluations of the ethanol and water extracts of the different parts of A. acutifolius, the ethanol extract of the leaves was shown to have the highest amount of radical scavenging activities (DPPH, 0.383 mg/mL and ABTS, 0.145 mg/mL). Each extract of A. acutifolius exhibited strong antioxidant capacities with the β-carotene/Linoleic acid test system. For the phosphomolybdenum method, the antioxidant capacity of the extracts was in the range of 8.89-45.29 µg/mg and each extract exhibited high cytotoxic activities. The results will provide additional information for future studies on the biological activities of A. acutifolius, while also helping us to understand the importance of this species.

Biological Activities of Wild Asparagus (Asparagus acutifolius L.)

Asparagus acutifolius L. (wild asparagus) is an edible plant species that is widely distributed throughout the Mediterranean. This study was designed to investigate the phenolic compounds, antioxidant, and cytotoxic activities of ethanol and water extracts of different parts (fruits and leaves) of A. acutifolius. The antioxidant activities of these extracts were analyzed using scavenging methods (DPPH and ABTS scavenging activity), the β-carotene/linoleic acid test system and the phosphomolybdenum method. Among the evaluations of the ethanol and water extracts of the different parts of A. acutifolius, the ethanol extract of the leaves was shown to have the highest amount of radical scavenging activities (DPPH, 0.383 mg/mL and ABTS, 0.145 mg/mL). Each extract of A. acutifolius exhibited strong antioxidant capacities with the β-carotene/Linoleic acid test system. For the phosphomolybdenum method, the antioxidant capacity of the extracts was in the range of 8.89-45.29 µg/mg and each extract exhibited high cytotoxic activities. The results will provide additional information for future studies on the biological activities of A. acutifolius, while also helping us to understand the importance of this species.

___

  • [1]. Pandey, M., Abidi, A.B., Singh, S.& Singh, R.P. (2006). Nutritional evaluation of leafy vegetable Paratha. Journal of Human Ecology, 19, 155. [2]. Kindl, M., Blazekovic, B., Bucar, F. & Vladimir-Knezevic, S. (2015). Antioxidant and anticholinesterase potential of Six Thymus Species. Evidence-Based Complementary and Alternative Medicine, 1-10. Doi: http://dx.doi.org/10.1155/2015/403950.
  • [3]. Bozzini, A. (1959). Revisione cito-sistematica del genere Asparagus L. I: Le specie di asparagus della flora italiana e chiave per la loro determinazione. Cariologia, 12, 199–264.
  • [4]. Fukushi, E., Onodera, S., Yamamori, A., Shiomi, N. & Kawabata, J. (2000). NMR analysis of triand tetrasaccharides from asparagus. Magnetic Resonance in Chemistry, 38, 1005–1011.
  • [5]. Kim, B. Y., Cui, Z. G., Lee, S. R., Kim, S. J., Kang, H. K., Lee, Y. K. & Park, D. B. (2009). Effects of Asparagus officinalis extracts on liver cell toxicity and ethanol metabolism. Journal of Food Science, 74, 204–208.
  • [6]. Makris, D. P. &– Rossiter, J. T. (2001). Domestic processing of onion bulbs (Allium cepa) and asparagus spears (Asparagus officinalis): Effect of flavonol content and antioxidant status. Journal of Agricultural and Food Chemistry, 49, 3216–3222.
  • [7]. Sautour M., Miyamoto T. & Dubois M.L. (2007). Steroidal saponins from Asparagus acutifolius. Phytochemistry, 68, 2554-2562.
  • [8]. Arcidiacono, S. & Pavone, P. (1994). Erbe spontanee commestibili del territorio etneo. Bollettino Accademia Gioenia di Scienze Naturali, 27, 346–481.
  • [9]. Venezia, A., Soressi, G.P., Falavigna, A. (1993). Aspetti relativi alla valorizzazione di specie di asparago spontanee in Italia. Agricoltura e Ricerca, 141, 41–48.
  • [10]. Di Maro, A., Pacifico, S., Fiorentino, A., Galasso, S., Gallicchio, M., Guida, V., Severino, V., Monaco, P. & Parente, A. (2013). Raviscanina wild asparagus (Asparagus acutifolius L.): A nutritionally valuable crop with antioxidant and antiproliferative properties. Food Research International, 53(1), 180-188.
  • [11]. Martins, D., Barros, L., Carvalho, A.M., & Ferreira, I.C.F.R. (2010). Nutritional and in vivo antioxidant properties of edible wild greens in Iberian Peninsula traditional diet. Food Chemistry, 125(2), 488-494.
  • [12]. Baytop T. (1999). Türkiye’de Bitkiler ile Tedavi. 2nd ed., Nobel Kitabevleri, İstanbul, 184-185.
  • [13]. Marc E.B., Nelly A., Annick D.D. & Frederic D. (2008). Plants used as remedies antirheumatic and antineuralgic in the traditional medicine of Lebanon. Journal of Ethnopharmacology, 120, 315-334.
  • [14]. Fenga C., Costa C., Caruso E., Raffa L., Alibrando C., Gangemi S., Docea A.O. & Tsatsakis A.M. (2016). Current evidence on the protective effect of dietary polyphenols on breast cancer., Farmacia, 64(1), 1-12.
  • [15]. Taskın, T. & Bitis, L. (2016). In vitro antioxidant activity of eight wild edible plants in Bursa province of Turkey. Farmacia, 64(5),706-711.
  • [16]. Ferrara, L., Dosi, R., Di Maro, A., Guida, V., Cefarelli, G., Pacifico, S., Mastellone, C., Fiorentino, A., Rosati, A., & Parente, A. (2011). Nutritional values, metabolic profile and radical scavenging capacities of wild asparagus (A. acutifolius L.). Journal of Food Composition and Analysis, 24, 326–333.
  • [17]. Kasture, S., Kasture, A., Ballero, M. & Maxia, A. (2009). Antioxidant, anti-inflammatory, and adaptogenic activity of Asparagus acutifolius extract. Oriental Pharmacy and Experimental Medicine, 9(1), 83-89.
  • [18]. Palfi, M., Jurković, Z., Ćosić, J., Tomić-Obrdalj, H., Jurković, V., Knežević, N. & Vrandečić, K. (2017). Total polyphenol content and antıoxıdant actıvıty of wild and cultivated asparagus ın croatıa. Portal Znanstventh Casopisa Republike Hrvatske, 23(1), 56-62.
  • [19]. Amin, I. & Tan, SH. (2002). Antioxidant activity of selected commercial seaweeds. Malaysian Journal of Nutrition, 8(2), 167-177.
  • [20]. -Prieto, P., Pineda, M. & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin E. Analytical Biochemistry, 269(2), 337–341.
  • [21]. Meriga, B., Mopuri, R., & Krishna, T.M. (2012). Insecticidal antimicrobial and antioxidant activities of bulb extracts of Allium sativum. Asian Pacific Journal of Tropical Medicine, 5(5), 391-395
  • [22]. Shalaby, E.A., & Shanab, S.M.M. (2013). Comparison of DPPH and ABTS assays for determining antioxidant potential of water and methanol extracts of Spirulina platensis. Indian Journal of Geo-Marine Sciences, 42(5), 556-564.
  • [23]. Slinkard, K. & Singleton VL. (1977). Total phenol analyses: Automation and comparison with manual methods. American Journal of Enology and Viticulture, 28,49–55.
  • [24]. Arvouet-Grand, A., Vennat, B., Pourrat, A. & Legret, P. (1994). Standardization of a propolis extract and identification of the main constituents. Journal de pharmacie de Belgique, 49(6), 462-468.
  • [25]. Broadhurst, R.B., & Jones, W.T. (1978) Analysis of condensed tannins using acidified vanillin. Journal of the Science of Food and Agriculture, 29(9), 788-794.
  • [26]. Meyer, B.N., Ferrigni, N.R., Putnam, J.E., Jacobsen, L.B., Nichols, D.E. & McLaughlin, J.L. (1982). Brine Shrimp: A convenient general bioassay for active plant constituents. Planta Medica, 45(5), 31-34.
  • [27]. Finney DJ. (1971). Probit Analysis. 3rd ed. Cambridge University Press, Cambridge.
  • [28]. Tepe B., Daferera D., Tepe A.S., Polissiou M. & Sokmen A. (2007). Antioxidant activity of the essential oil and various extracts of Nepeta flavida Hub.-Mor. from Turkey. Food Chemistry, 103,1358-1364.
  • [29]. Adıgüzel, A., Ozer, H., Sokmen, M., Gulluce, M., Sokmen, A., Kılıç, H., Sahin, F. & Baris, O. (2009). Antimicrobial and antioxidant activity of the essential oil and methanol extract of Nepeta cataria. Polish Journal of Microbiology, 58(1), 69-76.
  • [30]. Zengin, G. & Aktumsek, A. (2014). Investigation of antioxidant potentials of solvent extracts from different anatomical parts of Asphodeline anatolica E. Tuzlaci an endemic plant to Turkey. African Journal of Traditional Complementary, and Alternative Medicines, 11(2), 481–488.
  • [31]. Uysal, S., Zengin, G., & Aktümsek, A. (2016). Antioxidant properties and enzyme inhibitory effects of extracts from Mandragora autumnalis and its fatty acid composition. Marmara Pharmaceutical Journal, 20,144-151.
  • [32]. McLaughlin, J.L., Chang, C.J. & Smith, D.L. (1991). Bench-top bioassays for the discovery of bioactive natural products: an update. In:Rhaman AU. (Ed). Studies in Natural Products Chemistry, Elsevier, 383-409.
  • [33]. Krishnaraju, A.V., Rao, T.V.N., Sundararaju, D., Vanisree, M., Tsay, H.S. & Subbaraju, G.V. (2005). Assessment of bioactivity of Indian medicinal plants using Brine Shrimp (Artemia salina) lethality assay. International Journal of Applied Science and Engineering, 3(2), 125-134.
  • [34]. Adoum, O.A., Dabo, N.T. & Fatobe, M.O. (1997). Bioactivities of some savanna plants in the brine shrimp lethality test and in vitro antimicrobial assay. International Journal of Pharmacognosy, 35(5), 334-337.
  • [35]. Mayorga, P., Perz, K.R., Cruz, S.M. & Caceres, A. (2010). Comparison of bioassays using the anostracan crustaceans. Artemiz salina and Thamnocephalus platyurus for plant extract toxicity screening. Revista Brasileira de Farmacognosia, 20(6), 897-903.
  • [36]. Oliva, M. de las M., Gallucci, N., Zygadlo J.A. & Demo, M.S. (2007). Cytotoxic activity of Argentinean essential oils on Artemia salina. Pharmaceutical Biology, 45(4), 259-262,
  • [37]. Svoboda, K.P. & Hampson, J.B. (1999). Bioactivity of essential oils of selected temperate aromatic plants: antibacterial, antioxidant, anti-Inflammatory and other related pharmacological activities, Plant Biology Department, SAC Auchincruive, Ayr, Scotland, UK., KA6 5HW.
  • [38]. Hossain, A.M., Ferdous, T., Salehuddin, S.M. & Das, A.K. (2009). In vitro cytotoxicity (LC50) of extracts obtained from the seeds of Zea mays. Asian Journal of Food and Agro-Industry, 2(3), 336-34.
International Journal of Secondary Metabolite-Cover
  • Başlangıç: 2014
  • Yayıncı: İzzet KARA
Sayıdaki Diğer Makaleler

Biological Activities of Wild Asparagus (Asparagus acutifolius L.)

Arzu KASKA, Ramazan MAMMADOV, Nahide DENİZ

Antioxidative Defence Mechanisms in Tomato (Lycopersicum esculentum L.) Plants Sprayed with Different Pesticides and Boron compounds

Köksal KÜÇÜKAKYÜZ, Mahmut YILDIZTEKİN, Hasan Sungur CİVELEK, Said NADEEM, Atilla Levent TUNA

Cold Resistance of Plant Species of the Genus Vitex l. Introduced in M.M. GRYSHKO National Botanic Garden of NAS of Ukraine

Nataliia LEVCHYK, Volodymyr LEVON

Molecular identification and phytochemical profiling of kamiling (wild toxic plant) using thin layer chromatography

Dana Theresa C. DE LEON, John Dave C. AQUİNO, Mary Jhane G. VALENTİNO, Jerwin R. UNDAN

Electromagnetic radiation of low intensity as a factor of change of phenolic compounds content

Svetlana SHYSH, Zhanna MAZETS, Hanna SHUTAVA, Olga SYSHA, Yulia GORGUN

Investigation of Chemical Composition, Antioxidant, Anticholinesterase and Anti-urease activities of Euphorbia helioscopia

Mehmet Emin DURU, Ebru DEVECİ, Gülsen TEL ÇAYAN

Plant Taxa Used in the Treatment of Diabetes in Van Province, Turkey

Abdullah DALAR

Effect of Pre-/ Postnatal Hypoxia on Pyruvate Kinase in Rat Brain

Afag M. RASHİDOVA

Analysis of Phytochemical Composition and Biological Activities of Verbascum cheiranthifolium var. cheiranthifolium stem and flowers

Abdullah DALAR, Oruc ALLAHVERDİYEV, Aydin Sukru BENGU

Effects of NaCl applications on root growth and secondary metabolite production in madder (Rubia tinctorum L.) root cultures

Tunhan DEMİRCİ, Özlem ARAS AŞCI, Nilgün GÖKTÜRK BAYDAR