Bitkilerde kuraklığa duyarlı miRNA'lar: derleme

MikroRNA'lar (miRNA'lar), bitki yaşamının büyüme, gelişme ve stres yanitlari olmak üzere tüm aşamalarinda fonksiyonel olan tek iplikli RNA molekülü olarak bilinir. Bitki genomları, sayısız biyolojik süreci düzenlemede çeşitli fonksiyonlari olan yüzlerce miRNA'yı barındırır. Bitkilerde ilk kez 2002 yılında keşfedildikten sonra, bugüne kadar binlerce bitki miRNA'sı tanımlanmıştır. Yüksek verimli dizileme teknolojilerindeki son gelişmelerin yardımıyla, belirli koşullardaki çeşitli bitkilerde miRNA'ların genom ve transkriptom düzeyinde taranması gerçekleştirilmiştir. Bitkileri olumsuz etkileyen koşullardan kuraklık stresi, dünya çapında bitki büyümesini ve üretkenliğini sınırlayan başlica faktörlerden biridir. Bugüne kadar, belirli bitkilerde kuraklığa duyarlı miRNA'lar ortaya çıkarılmıştır. Ayrıca, bazı miRNA'ların fonksiyonel karakterizasyonları, kuraklığı düzenleyici mekanizmalardaki rolleri hakkında bilgi sağlamaktadır. Bu derleme, bitkilerin miRNA tabanlı kuraklık stresi regulasyonuna ilişkin en son bulguları özetlemektedir. Çalışma, bitkinin kuraklık stresi yanıtında miRNA'ların rolü hakkında fikir vermektedir.

Drought-responsive miRNAs in plants: a review

MicroRNAs (miRNAs) are known as single-stranded RNA molecule functional in all steps of plant life including growth, development, and stress responses. Plant genomes harbor hundreds of miRNAs, which have diverse functions in regulating numerous biological processes. After being first discovered in plants by the year 2002, thousands of plant miRNAs have been identified so far. With the help of recent advances in high-throughput sequencing technologies, genome and transcriptome-wide screening of miRNAs in specific conditions and in a variety of plants has been conducted. Among the challenging conditions that inversely affect plants, drought stress is one of the main factors limiting plant growth and productivity worldwide. So far, drought-responsive miRNAs have been uncovered in particular plants. Moreover, functional characterizations of some miRNAs provide insights into their role in drought regulatory mechanisms. This review summarizes the most recent findings on miRNA-based drought stress regulation of plants. The study provides insights about role of miRNAs in drought stress response of plant.

___

  • [1] Kogan, F. N. (1995). Droughts of the late 1980s in the United States as derived from NOAA polar-orbiting satellite data. Bulletin of the American Meteorological Society, 76(5), 655-668.
  • [2] EM-DAT (2013). Retrieved August 20, 2021 from https://www.emdat.be/
  • [3] Dai, A., Trenberth, K. E., & Qian, T. (2004). A global dataset of Palmer Drought Severity Index for 1870–2002: Relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology, 5(6), 1117-1130.
  • [4] Aukerman, M. J., & Sakai, H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. The Plant Cell, 15(11), 2730-2741.
  • [5] Mallory, A. C., & Vaucheret, H. (2006). Functions of microRNAs and related small RNAs in plants. Nature genetics, 38(6), S31-S36.
  • [6] Voinnet, O. (2009). Origin, biogenesis, and activity of plant microRNAs. Cell, 136(4), 669-687.
  • [7] Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75(5), 843-854.
  • [8] Kozomara, A., Birgaoanu, M., & Griffiths-Jones, S. (2019). miRBase: from microRNA sequences to function. Nucleic acids research, 47(D1), D155-D162.
  • [9] Guo, Z., Kuang, Z., Wang, Y., Zhao, Y., Tao, Y., Cheng, C., ... & Yang, X. (2020). PmiREN: a comprehensive encyclopedia of plant miRNAs. Nucleic acids research, 48(D1), D1114-D1121.
  • [10] Liu, H. H., Tian, X., Li, Y. J., Wu, C. A., & Zheng, C. C. (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. Rna, 14(5), 836-843.
  • [11] Gong, L., Zhang, H., Gan, X., Zhang, L., Chen, Y., Nie, F., ... & Song, Y. (2015). Transcriptome profiling of the potato (Solanum tuberosum L.) plant under drought stress and water-stimulus conditions. PLoS One, 10(5), e0128041.
  • [12] Huang, L., Zhang, F., Wang, W., Zhou, Y., Fu, B., & Li, Z. (2014). Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. BMC genomics, 15(1), 1-16.
  • [13] Prince, S. J., Joshi, T., Mutava, R. N., Syed, N., Vitor, M. D. S. J., Patil, G., ... & Nguyen, H. T. (2015). Comparative analysis of the drought-responsive transcriptome in soybean lines contrasting for canopy wilting. Plant Science, 240, 65-78.
  • [14] Kakumanu, A., Ambavaram, M. M., Klumas, C., Krishnan, A., Batlang, U., Myers, E., ... & Pereira, A. (2012). Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. Plant physiology, 160(2), 846-867.
  • [15] Shuai, P., Liang, D., Zhang, Z., Yin, W., & Xia, X. (2013). Identification of drought-responsive and novel Populus trichocarpamicroRNAs by high-throughput sequencing and their targets using degradome analysis. Bmc Genomics, 14(1), 1-14.
  • [16] Ma, X., Wang, P., Zhou, S., Sun, Y., Liu, N., Li, X., & Hou, Y. (2015). De novo transcriptome sequencing and comprehensive analysis of the drought-responsive genes in the desert plant Cynanchum komarovii. BMC genomics, 16(1), 1-17.
  • [17] Wang, Z., Hu, H., Goertzen, L. R., McElroy, J. S., & Dane, F. (2014). Analysis of the Citrullus colocynthis transcriptome during water deficit stress. PLoS One, 9(8), e104657.
  • [18] Liu, C., Zhang, X., Zhang, K., An, H., Hu, K., Wen, J., ... & Fu, T. (2015). Comparative analysis of the Brassica napus root and leaf transcript profiling in response to drought stress. International journal of molecular sciences, 16(8), 18752-18777.
  • [19] Zare, S., Nazarian-Firouzabadi, F., Ismaili, A., & Pakniyat, H. (2019). Identification of miRNAs and evaluation of candidate genes expression profile associated with drought stress in barley. Plant Gene, 20, 100205.
  • [20] Iquebal, M. A., Sharma, P., Jasrotia, R. S., Jaiswal, S., Kaur, A., Saroha, M., ... & Kumar, D. (2019). RNAseq analysis reveals drought-responsive molecular pathways with candidate genes and putative molecular markers in root tissue of wheat. Scientific reports, 9(1), 1-18.
  • [21] Obernosterer, G., Leuschner, P. J., Alenius, M., & Martinez, J. (2006). Post-transcriptional regulation of microRNA expression. Rna, 12(7), 1161-1167.
  • [22] Sood, P., Krek, A., Zavolan, M., Macino, G., & Rajewsky, N. (2006). Cell-type-specific signatures of microRNAs on target mRNA expression. Proceedings of the National Academy of Sciences, 103(8), 2746-2751.
  • [23] Barrera-Figueroa, B. E., Gao, L., Wu, Z., Zhou, X., Zhu, J., Jin, H., ... & Zhu, J. K. (2012). High throughput sequencing reveals novel and abiotic stress-regulated microRNAs in the inflorescences of rice. BMC plant biology, 12(1), 1-11.
  • [24] Ma, X., Xin, Z., Wang, Z., Yang, Q., Guo, S., Guo, X., ... & Lin, T. (2015). Identification and comparative analysis of differentially expressed miRNAs in leaves of two wheat (Triticum aestivum L.) genotypes during dehydration stress. BMC Plant Biology, 15(1), 1-15.
  • [25] Eldem, V., Çelikkol Akçay, U., Ozhuner, E., Bakır, Y., Uranbey, S., & Unver, T. (2012). Genome-wide identification of miRNAs responsive to drought in peach (Prunus persica) by high-throughput deep sequencing. PloS one, 7(12), e50298.
  • [26] Thiebaut, F., Grativol, C., Tanurdzic, M., CarnavaleBottino, M., Vieira, T., Motta, M. R., ... & Ferreira, P. C. G. (2014). Differential sRNA regulation in leaves and roots of sugarcane under water depletion. PLoS One, 9(4), e93822.
  • [27] Wang, T., Chen, L., Zhao, M., Tian, Q., & Zhang, W. H. (2011). Identification of drought-responsive microRNAs in Medicago truncatula by genome-wide high-throughput sequencing. BMC genomics, 12(1), 1-11.
  • [28] Zhang, N., Yang, J., Wang, Z., Wen, Y., Wang, J., He, W., ... & Wang, D. (2014). Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. PloS one, 9(4), e95489.
  • [29] Chen, Q., Li, M., Zhang, Z., Tie, W., Chen, X., Jin, L., ... & Zhou, H. (2017). Integrated mRNA and microRNA analysis identifies genes and small miRNA molecules associated with transcriptional and post-transcriptionallevel responses to both drought stress and re-watering treatment in tobacco. BMC genomics, 18(1), 1-16.
  • [30] Liu, M., Yu, H., Zhao, G., Huang, Q., Lu, Y., & Ouyang, B. (2017). Profiling of drought-responsive microRNA and mRNA in tomato using high-throughput sequencing. BMC genomics, 18(1), 1-18.
  • [31] Luo, M., Gao, Z., Li, H., Li, Q., Zhang, C., Xu, W., ... & Wang, S. (2018). Selection of reference genes for miRNA qRT-PCR under abiotic stress in grapevine. Scientific reports, 8(1), 1-11.
  • [32] Akdogan, G., Tufekci, E. D., Uranbey, S., & Unver, T. (2016). miRNA-based drought regulation in wheat. Functional & integrative genomics, 16(3), 221-233.
  • [33] Wang, M., Zheng, Q., Shen, Q., & Guo, S. (2013). The critical role of potassium in plant stress response. International journal of molecular sciences, 14(4), 7370- 7390.
  • [34] Reyes, J. L., & Chua, N. H. (2007). ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. The Plant Journal, 49(4), 592-606.
  • [35] Allen, R. S., Li, J., Alonso-Peral, M. M., White, R. G., Gubler, F., & Millar, A. A. (2010). MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects. Silence, 1(1), 1-18.
  • [36] Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., & Yamaguchi-Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell, 15(1), 63-78.
  • [37] Tombuloglu, H. (2020). Genome-wide identification and expression analysis of R2R3, 3R-and 4R-MYB transcription factors during lignin biosynthesis in flax (Linum usitatissimum). Genomics, 112(1), 782-795.
  • [38] Li, W. X., Oono, Y., Zhu, J., He, X. J., Wu, J. M., Iida, K., ... & Zhu, J. K. (2008). The Arabidopsis NFYA5 transcription factor is regulated transcriptionally and posttranscriptionally to promote drought resistance. The Plant Cell, 20(8), 2238-2251.
  • [39] Zhao, B., Liang, R., Ge, L., Li, W., Xiao, H., Lin, H., ... & Jin, Y. (2007). Identification of drought-induced microRNAs in rice. Biochemical and biophysical research communications, 354(2), 585-590.
  • [40] Zhang, X., Zou, Z., Gong, P., Zhang, J., Ziaf, K., Li, H., ... & Ye, Z. (2011). Over-expression of microRNA169 confers enhanced drought tolerance to tomato. Biotechnology letters, 33(2), 403-409.
  • [41] Candar‐Cakir, B., Arican, E., & Zhang, B. (2016). Small RNA and degradome deep sequencing reveals drought‐and tissue‐specific micrornas and their important roles in drought‐sensitive and drought‐tolerant tomato genotypes. Plant biotechnology journal, 14(8), 1727-1746.
  • [42] Yu, Y., Ni, Z., Wang, Y., Wan, H., Hu, Z., Jiang, Q., ... & Zhang, H. (2019). Overexpression of soybean miR169c confers increased drought stress sensitivity in transgenic Arabidopsis thaliana. Plant Science, 285, 68-78.
  • [43] Sun, H., Hu, M., Li, J., Chen, L., Li, M., Zhang, S., ... & Yang, X. (2018). Comprehensive analysis of NAC transcription factors uncovers their roles during fiber development and stress response in cotton. BMC plant biology, 18(1), 1-15.
  • [44] Dudhate, A., Shinde, H., Yu, P., Tsugama, D., Gupta, S. K., Liu, S., & Takano, T. (2021). Comprehensive analysis of NAC transcription factor family uncovers drought and salinity stress response in pearl millet (Pennisetum glaucum). BMC genomics, 22(1), 1-15.
  • [45] Jiang, D., Zhou, L., Chen, W., Ye, N., Xia, J., & Zhuang, C. (2019). Overexpression of a microRNA-targeted NAC transcription factor improves drought and salt tolerance in Rice via ABA-mediated pathways. Rice, 12(1), 1-11.
  • [46] Fang, Y., Xie, K., & Xiong, L. (2014). Conserved miR164- targeted NAC genes negatively regulate drought resistance in rice. Journal of experimental botany, 65(8), 2119-2135.
  • [47] Shi, G. Q., Fu, J. Y., Rong, L. J., Zhang, P. Y., Guo, C. J., & Kai, X. I. A. O. (2018). TaMIR1119, a miRNA family member of wheat (Triticum aestivum), is essential in the regulation of plant drought tolerance. Journal of integrative agriculture, 17(11), 2369-2378.
  • [48] Tombuloglu, H. (2019). Genome-wide analysis of the auxin response factors (ARF) gene family in barley (Hordeum vulgare L.). Journal of Plant Biochemistry and Biotechnology, 28(1), 14-24.
  • [49] Ho, T., Pak, H., Ryom, C., & Han, M. (2019). Overexpression of OsmiR393a gene confers drought tolerance in creeping bentgrass. Plant Biotechnology Reports, 13(1), 85-93.
  • [50] Arshad, M., Gruber, M. Y., & Hannoufa, A. (2018). Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress. Scientific reports, 8(1), 1-13.
  • [51] Zhang, J., Zhang, H., Srivastava, A. K., Pan, Y., Bai, J., Fang, J., ... & Zhu, J. K. (2018). Knockdown of rice microRNA166 confers drought resistance by causing leaf rolling and altering stem xylem development. Plant physiology, 176(3), 2082-2094.
  • [52] Ding, Y., Tao, Y., & Zhu, C. (2013). Emerging roles of microRNAs in the mediation of drought stress response in plants. Journal of experimental botany, 64(11), 3077-3086.
  • [53] Sunkar, R., & Zhu, J. K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell, 16(8), 2001-2019.
  • [54] Lu, S., Sun, Y. H., & Chiang, V. L. (2008). Stress‐ responsive microRNAs in Populus. The Plant Journal, 55(1), 131-151.
  • [55] Kantar, M., Lucas, S. J., & Budak, H. (2011). miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta, 233(3), 471-484. [56] Zhao, B., Liang, R., Ge, L., Li, W., Xiao, H., Lin, H., ... & Jin, Y. (2007). Identification of drought-induced microRNAs in rice. Biochemical and biophysical research communications, 354(2), 585-590.
  • [57] Ferreira, T. H., Gentile, A., Vilela, R. D., Costa, G. G. L., Dias, L. I., Endres, L., & Menossi, M. (2012). microRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.), PLoS One, 7, 10.
  • [58] Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., ... & Jones, J. D. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science, 312(5772), 436-439.
  • [59] Gupta, O. P., Meena, N. L., Sharma, I., & Sharma, P. (2014). Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Molecular Biology Reports, 41(7), 4623-4629.
  • [60] Zhou, X., Wang, G., & Zhang, W. (2007). UV‐B responsive microRNA genes in Arabidopsis thaliana. Molecular systems biology, 3(1), 103.
  • [61] Sunkar, R., Li, Y. F., & Jagadeeswaran, G. (2012). Functions of microRNAs in plant stress responses. Trends in plant science, 17(4), 196-203.
  • [62] Allen, E., Xie, Z., Gustafson, A. M., & Carrington, J. C. (2005). microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell, 121(2), 207-221.
  • [63] Williams, L., Carles, C. C., Osmont, K. S., & Fletcher, J. C. (2005). A database analysis method identifies an endogenous trans-acting short-interfering RNA that targets the Arabidopsis ARF2, ARF3, and ARF4 genes. Proceedings of the National Academy of Sciences, 102(27), 9703-9708.
  • [64] Pekker, I., Alvarez, J. P., & Eshed, Y. (2005). Auxin response factors mediate Arabidopsis organ asymmetry via modulation of KANADI activity. The Plant Cell, 17(11), 2899-2910.
  • [65] Meng, Y., Ma, X., Chen, D., Wu, P., & Chen, M. (2010). MicroRNA-mediated signaling involved in plant root development. Biochemical and biophysical research communications, 393(3), 345-349.
  • [66] Kang, T., Yu, C. Y., Liu, Y., Song, W. M., Bao, Y., Guo, X. T., ... & Zhang, H. X. (2020). Subtly manipulated expression of ZmmiR156 in tobacco improves drought and salt tolerance without changing the architecture of transgenic plants. Frontiers in plant science, 10, 1664.
  • [67] Feyissa, B. A., Arshad, M., Gruber, M. Y., Kohalmi, S. E., & Hannoufa, A. (2019). The interplay between miR156/SPL13 and DFR/WD40–1 regulate drought tolerance in alfalfa. BMC plant biology, 19(1), 1-19.
  • [68] Li, W., Wang, T., Zhang, Y., & Li, Y. (2016). Overexpression of soybean miR172c confers tolerance to water deficit and salt stress, but increases ABA sensitivity in transgenic Arabidopsis thaliana. Journal of Experimental Botany, 67(1), 175-194.
  • [69] Zhou, M., Li, D., Li, Z., Hu, Q., Yang, C., Zhu, L., Luo, H., Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass, Plant Physiol, 161, 1375- 1391, 2013.
  • [70] Xia, K., Wang, R., Ou, X., Fang, Z., Tian, C., Duan, J., ... & Zhang, M. (2012). OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PloS one, 7(1), e30039.
  • [71] Ho, T., Pak, H., Ryom, C., & Han, M. (2019). Overexpression of OsmiR393a gene confers drought tolerance in creeping bentgrass. Plant Biotechnology Reports, 13(1), 85-93.
  • [72] Yuan, W., Suo, J., Shi, B., Zhou, C., Bai, B., Bian, H., ... & Han, N. (2019). The barley miR393 has multiple roles in regulation of seedling growth, stomatal density, and drought stress tolerance. Plant Physiology and Biochemistry, 142, 303-311.
  • [73] Geng, Z., Liu, J., Li, D., Zhao, G., Liu, X., Dou, H., ... & Wang, Y. (2021). A Conserved miR394-Targeted F-Box Gene Positively Regulates Drought Resistance in Foxtail Millet. Journal of Plant Biology, 64(3), 243-252.
  • [74] Ni, Z., Hu, Z., Jiang, Q., & Zhang, H. (2012). Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana. Biochemical and biophysical research communications, 427(2), 330- 335.
  • [75] Liu, D., Song, Y., Chen, Z., & Yu, D. (2009). Ectopic expression of miR396 suppresses GRF target gene expression and alters leaf growth in Arabidopsis. Physiologia plantarum, 136(2), 223-236.
  • [76] Sun, Z., Shu, L., Zhang, W., & Wang, Z. (2020). CcamiR398 increases copper sulfate stress sensitivity via the regulation of CSD mRNA transcription levels in transgenic Arabidopsis thaliana. PeerJ, 8, e9105.
  • [77] Liu, B., & Sun, G. (2017). micro RNA s contribute to enhanced salt adaptation of the autopolyploid Hordeum bulbosum compared with its diploid ancestor. The Plant Journal, 91(1), 57-69.
  • [78] Yang, F., & Yu, D. (2009). Overexpression of Arabidopsis MiR396 enhances drought tolerance in transgenic tobacco plants. Acta Botanica Yunnanica, 31(5), 421-426.
  • [79] Zhou, Y., Liu, W., Li, X., Sun, D., Xu, K., Feng, C., ... & Li, H. (2020). Integration of sRNA, degradome, transcriptome analysis and functional investigation reveals gma-miR398c negatively regulates drought tolerance via GmCSDs and GmCCS in transgenic Arabidopsis and soybean. BMC plant biology, 20(1), 1-19.
  • [80] Hajyzadeh, M., Turktas, M., Khawar, K. M., & Unver, T. (2015). miR408 overexpression causes increased drought tolerance in chickpea. Gene, 555(2), 186-193.
  • [81] Hang, N., Shi, T., Liu, Y., Ye, W., Taier, G., Sun, Y., ... & Zhang, W. (2021). Overexpression of Os‐microRNA408 enhances drought tolerance in perennial ryegrass. Physiologia Plantarum, 172(2), 733-747.
  • [82] Ma, C., Burd, S., & Lers, A. (2015). mi R 408 is involved in abiotic stress responses in A rabidopsis. The Plant Journal, 84(1), 169-187.
  • [83] Yue, E., Cao, H., & Liu, B. (2020). OsmiR535, a potential genetic editing target for drought and salinity stress tolerance in Oryza sativa. Plants, 9(10), 1337.
  • [84] Ferdous, J., Whitford, R., Nguyen, M., Brien, C., Langridge, P., & Tricker, P. J. (2017). Drought-inducible expression of Hv-miR827 enhances drought tolerance in transgenic barley. Functional & integrative genomics, 17(2), 279-292.
  • [85] Shi, G. Q., Fu, J. Y., Rong, L. J., Zhang, P. Y., Guo, C. J., & Kai, X. I. A. O. (2018). TaMIR1119, a miRNA family member of wheat (Triticum aestivum), is essential in the regulation of plant drought tolerance. Journal of integrative agriculture, 17(11), 2369-2378.
  • [86] Chen, L., Meng, J., & Luan, Y. (2019). miR1916 plays a role as a negative regulator in drought stress resistance in tomato and tobacco. Biochemical and biophysical research communications, 508(2), 597-602.
  • [87] Kantar, M., Unver, T., & Budak, H. (2010). Regulation of barley miRNAs upon dehydration stress correlated with target gene expression. Functional & integrative genomics, 10(4), 493-507.
  • [88] Li, Y., Wan, L., Bi, S., Wan, X., Li, Z., Cao, J., ... & Li, X. (2017). Identification of drought-responsive microRNAs from roots and leaves of alfalfa by high-throughput sequencing. Genes, 8(4), 119.
  • [89] Boualem, A., Laporte, P., Jovanovic, M., Laffont, C., Plet, J., Combier, J. P., ... & Frugier, F. (2008). MicroRNA166 controls root and nodule development in Medicago truncatula. The Plant Journal, 54(5), 876-887.
  • [90] Trindade, I., Capitão, C., Dalmay, T., Fevereiro, M. P., & Santos, D. M. D. (2010). miR398 and miR408 are upregulated in response to water deficit in Medicago truncatula. Planta, 231(3), 705-716.
  • [91] Lu, S., Sun, Y. H., Shi, R., Clark, C., Li, L., & Chiang, V. L. (2005). Novel and mechanical stress–responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. The Plant Cell, 17(8), 2186-2203.
  • [92] Li, T., Li, H., Zhang, Y. X., & Liu, J. Y. (2011). Identification and analysis of seven H2O2-responsive miRNAs and 32 new miRNAs in the seedlings of rice (Oryza sativa L. ssp. indica). Nucleic acids research, 39(7), 2821-2833.
  • [93] Wang, Y., Feng, C., Zhai, Z., Peng, X., Wang, Y., Sun, Y., ... & Li, T. (2020). The apple microR171i-SCARECROWLIKE PROTEINS26. 1 module enhances drought stress tolerance by integrating ascorbic acid metabolism. Plant physiology, 184(1), 194-211.
  • [94] Um, T., Choi, J., Park, T., Chung, P. J., Jung, S. E., Shim, J. S., ... & Kim, J. K. (2022). Rice microRNA171f/SCL6 module enhances drought tolerance by regulation of flavonoid biosynthesis genes. Plant direct, 6(1), e374.
  • [95] Fan, Y., Zhang, F., & Xie, J. (2022). Overexpression of miR5505 enhanced drought and salt resistance in rice (Orayza sativa). bioRxiv.
  • [96] Gao, W., Li, M., Yang, S., Gao, C., Su, Y., Zeng, X., ... & Xia, K. (2022). miR2105 and the kinase OsSAPK10 coregulate OsbZIP86 to mediate drought-induced ABA biosynthesis in rice. Plant Physiology, 189(2), 889-905.
  • [97] Dong, Z., Han, M. H., & Fedoroff, N. (2008). The RNAbinding proteins HYL1 and SE promote accurate in vitro processing of pri-miRNA by DCL1. Proceedings of the National Academy of Sciences, 105(29), 9970-9975.
  • [98] Li, X., Chen, P., Xie, Y., Yan, Y., Wang, L., Dang, H., ... & Guan, Q. (2020). Apple SERRATE negatively mediates drought resistance by regulating MdMYB88 and MdMYB124 and microRNA biogenesis. Horticulture research, 7.
  • [99] Balyan, S., Kansal, S., Jajo, R., Behere, P. R., Chatterjee, R., & Raghuvanshi, S. (2022). Delineating the TissueMediated Drought Stress Governed Tuning of Conserved miR408 and Its Targets in Rice. Preprints, 2022020113.
  • [100]Mishra, S., Sahu, G., & Shaw, B. P. (2022). Integrative small RNA and transcriptome analysis provides insight into key role of miR408 towards drought tolerance response in cowpea. Plant Cell Reports, 41(1), 75-94
International Journal of Innovative Engineering Applications-Cover
  • Başlangıç: 2016
  • Yayıncı: Niyazi Özdemir
Sayıdaki Diğer Makaleler

Pedometre, GNSS ve IMU ile Mesafe Ölçüm Doğruluğunun Tespit Edilmesi ve Yeni Geliştirilen İvme Sensörü Temelli Yöntem

Uğur ACAR

AISI 904L Süper Dubleks Paslanmaz Çeliğin Tornalanmasında MMY, hBN ve N2 Soğutma/Yağlama Koşullarının Performans Değerlendirmesi

Şenol ŞİRİN

Tek ve Çift Temperleme İşlemi Yapılmış Vermiküler Dökme Demirin (VDD) Aşınma Performansı Üzerine Karşılaştırmalı Bir Araştırma

Engin TAN

NiTiNbX ( X=Ta ve V) Biyouyumlu Şekil Hatırlamalı Alaşımların Yapay Vücut Sıvısı İçerisinde Hücre Kültür Testi ve Bakteri Üreme Değerlendirilmesi

Cennet Canan KARADERİ, Hüseyin KAHRAMAN, Fethi DAĞDELEN, Esra BALCI

AISI 304 Paslanmaz Çeliğin Spin Yöntemi Kullanılarak TiO2 Filmi İle Kaplanması ve Yapısal Özelliklerinin Araştırılması

Hatice ASIL UĞURLU, Hatice VAROL ÖZKAVAK

3D Modellemelerin Boyutsal Doğruluk ve Hassasiyet Açısından Bir Karşılaştırma Çalışması

Mehmet ALTUĞ

DC-DC Konvertörler ile Bir Fotovoltaik Dizinin Elektriksel Karakteristiklerinin Elde Edilmesi

Koray Şener PARLAK

NiO Takviyeli Mn Katkılı Hidroksiapatit Kompozitlerinin Sentez ve Karakterizasyonu

Tankut ATEŞ, Aydan AKSOĞAN KORKMAZ, Ömer KAYGILI, Niyazi BULUT, Serhat KESER

Darrieus Türbinleri için CFD Kullanılanılarak NACA ve NREL Aerofillerinin Karşılaştırmalı Bir Aerodinamik Analizi

Yunus CELİK

Pirimidin-5-Karbonitril Türevlerinin ve Farklı Şekilde İkame Edilmiş Karbazollerin Işık Yayan Özellikleri: Teorik Bir Hesaplama

Sultan ERKAN, Necdet KARAKOYUN