Birim Hücre Yüksekliğinin Hacim Merkezli Kafes Yapıların Balistik Performansına Etkisi

Metal eklemeli imalat teknolojisi ile üretilen kafes yapılar, şok dalga sönümleme, enerji emme ve hafiflik özellikleri nedeniyle savunma teknolojilerinin önemli bir parçası olan zırh uygulamalarında potansiyel bir alternatif olabilirler. Metal kafes yapıların patlayıcılara karşı korunması literatürde sıklıkla araştırılmış olmasına rağmen, perforasyon performansları nadiren çalışılmıştır. Bu araştırmada, LS-DYNA yazılımı kullanılarak Johnson-Cook dayanım ve hasar modeli parametreleri ile sayısal balistik penetrasyon testleri gerçekleştirilmiştir. Kafes malzemesi olarak yüksek enerji soğurma kabiliyetine sahip AlSi10Mg alaşımı seçilmiştir. Hacim merkezli kafes yapı için hem genişlik hem de uzunluk 4 mm olarak seçilirken, birim hücre parametreleri olarak sekiz farklı hücre yüksekliği (3, 4, 5, 6, 7, 8, 9 ve 15 mm) kullanılmıştır. Sonuçlar, kafes yapılarının balistik performansının, hacim merkezli kafes yapılar için birim hücre yüksekliğinin optimize edilmesiyle geliştirilebileceğini göstermektedir.

Effect of Unit Cell Height on the Ballistic Performance of the Body-Centered Lattice Structures

Lattice structures, produced by metal additive manufacturing technology, can be a potential alternative in armor applications, which are important parts of defense technologies due to their shock wave damping, energy absorption and light-weight properties. Despite the fact that the protection of metal lattice structures against explosives has been frequently investigated in the literature, their perforation performance is rarely studied. In this research, numerical ballistic penetration tests were carried out with Johnson-Cook strength and failure model parameters by using LS-DYNA software. AlSi10Mg alloy was chosen as a lattice material, which has high energy absorption ability. Both width and length were chosen as 4 mm for the body-centered lattice structure, while eight different cell height (3, 4, 5, 6, 7, 8, 9 and 15 mm) were used as unit cell parameters. The results show that the ballistic performance of lattice structures could be improved by optimizing the unit cell height for the body-centered lattice structures.

___

  • Constellium awarded contract with TARDEC, the US army tank automotive research development and engineering center. (2018, November 30). Constellium. https://www.constellium.com/news/2016/09/28/constellium-awarded-contract-tardec-us-army-tank-automotive-research-development-and
  • Balos, S., Howard, D., Brezulianu, A., & Labus Zlatanović, D. (2021). Perforated plate for ballistic protection—A review. Metals, 11(4), 526.
  • Luo, D., Wang, Y., Wang, F., Cheng, H., Zhang, B., & Zhu, Y. (2020). The influence of metal cover plates on ballistic performance of silicon carbide subjected to large-scale tungsten projectile. Materials & Design, 191, 108659.
  • Flores-Johnson, E., Saleh, M., & Edwards, L. (2011). Ballistic performance of multi-layered metallic plates impacted by a 7.62-mm APM2 projectile. International Journal of Impact Engineering, 38(12), 1022-1032.
  • Yunfei, D., Wei, Z., Yonggang, Y., & Gang, W. (2014). The ballistic performance of metal plates subjected to impact by projectiles of different strength. Materials & Design, 58, 305-315.
  • Zhang, R., Qiang, L., Han, B., Zhao, Z., Zhang, Q., Ni, C., & Lu, T. J. (2020). Ballistic performance of UHMWPE laminated plates and UHMWPE encapsulated aluminum structures: Numerical simulation. Composite Structures, 252, 112686.
  • Laurençon, M., De Rességuier, T., Loison, D., Baillargeat, J., Ngnekou, J. D., & Nadot, Y. (2019). Effects of additive manufacturing on the dynamic response of AlSi10Mg to laser shock loading. Materials Science and Engineering: A, 748, 407-417.
  • Liu, X., Sekizawa, K., Suzuki, A., Takata, N., Kobashi, M., & Yamada, T. (2020). Compressive properties of Al-SI alloy lattice structures with three different unit cells fabricated via laser powder bed fusion. Materials, 13(13), 2902.
  • Płatek, P., Sienkiewicz, J., Janiszewski, J., & Jiang, F. (2020). Investigations on mechanical properties of lattice structures with different values of relative density made from 316L by selective laser melting (SLM). Materials, 13(9), 2204.
  • Hassanin, H., Abena, A., Elsayed, M. A., Essa, K. (2020). 4D Printing of NiTi Auxetic Structure with Improved Ballistic Performance, Micromachines, 11(8), 745.
  • Sadeghi, H., Bhate, D., Abraham, J., & Magallanes, J. (2018). Quasi-static and dynamic behavior of additively manufactured metallic lattice cylinders. AIP Conference Proceedings, 1979, 070029
  • Tancogne-Dejean, T., Spierings, A. B., & Mohr, D. (2016). Additively-manufactured metallic micro-lattice materials for high specific energy absorption under static and dynamic loading. Acta Materialia, 116, 14-28.
  • Hafizoglu, H., Durlu, N., & Konokman, H. E. (2019). Effects of sintering temperature and Ni/FE ratio on ballistic performance of tungsten heavy alloy fragments. International Journal of Refractory Metals and Hard Materials, 81, 155-166.
  • Børvik, T., Hopperstad, O. S., & Pedersen, K. O. (2010). Quasi-brittle fracture during structural impact of AA7075-T651 aluminium plates. International Journal of Impact Engineering, 37(5), 537-551.
  • LS-Dyna Keyword User's Manual, vol. I. (2007). Livermore Software Technology Corp. https://www.lstc.com/pdf/ls-dyna_971_manual_k.pdf
  • Segebade, E., Gerstenmeyer, M., Dietrich, S., Zanger, F., & Schulze, V. (2019). Influence of anisotropy of additively manufactured AlSi10Mg parts on chip formation during orthogonal cutting. Procedia CIRP, 82, 113-118.
  • Fras, T., Colard, L., & Pawlowski, P. (2015). Perforation of aluminum plates by fragment simulating projectiles (FSP). The International Journal of Multiphysics, 9(3), 267-286.
  • Elshenawy, T., & Li, Q. (2013). Influences of target strength and confinement on the penetration depth of an oil well perforator. International Journal of Impact Engineering, 54, 130-137.
  • Kristoffersen, M., Costas, M., Koenis, T., Brøtan, V., Paulsen, C. O., & Børvik, T. (2020). On the ballistic perforation resistance of additive manufactured AlSi10Mg aluminium plates. International Journal of Impact Engineering, 137, 103476.
  • Bai, L., Gong, C., Chen, X., Zheng, J., Yang, J., Li, K., & Sun, Y. (2021). Heterogeneous compressive responses of additively manufactured Ti-6Al-4V lattice structures by varying geometric parameters of cells. International Journal of Mechanical Sciences, 214, 106922.