DC-DC Konvertörler ile Bir Fotovoltaik Dizinin Elektriksel Karakteristiklerinin Elde Edilmesi

Günlük hayatta Fotovoltaik modüllerin kullanımının artmasıyla, bu modüllerin performans parametrelerinin bilinmesi, kullanım, tasarım ve verimlilik çalışmaları açısından önemli hale gelmiştir. DC-DC konvertörler hemen hemen fotovoltaik sistemlerin çoğunda kullanılan güç elektroniği devreleridir. Bu devreler aynı zamanda bir yük emülatörü olarakda kullanılabileceğinden, fotovoltaik modüllerin elektriksel karakteristik eğrilerini elde etme amaçlı da kullanma olanağı da sunmaktadır. Bu çalışmada bir fotovoltaik dizinin, farklı tip DC-DC konvertörler kullanılarak elektriksel karakteristiklerinin elde edilişi gösterilmiştir. Sistem Matlab-Simulink ortamında benzetimi yapılarak hem homojen ışımada hem de farklı kısmi gölge senaryolarında sonuçlar incelenmiştir. Ardından bu karakteristiklerin kullanılan konverter tipi göz önüne alınarak karşılaştırılması yapılarak maksimum güç izleyici yöntemlerinde nasıl kullanılabileceği açıklanmıştır.

Obtaining the Electrical Characteristics of a Photovoltaic Array with DC-DC Converters

With the increasing use of Photovoltaic modules in daily life, knowing the performance parameters of these modules has become important in terms of usage, design and efficiency studies. DC-DC converters are power electronics circuits used in almost the majority of photovoltaic systems. Since these circuits can also be used as a load emulator, they also offer the opportunity to obtain the electrical characteristic curves of photovoltaic modules. In this study, the electrical characteristics of a photovoltaic array are demonstrated using different types of DC-DC converters. The system was simulated in the Matlab-Simulink environment, and the results were examined both in uniform irradiation and in different partial shade scenarios. Then, it is explained how these characteristics can be used in maximum power point tracker methods by comparing them by considering the converter type used.

___

  • [1] García, M., Maruri J. M., Marroyo L., Lorenzo E., & Pérez M. (2008). Partial Shadowing, MPPT Performance and Inverter Configurations: Observations at Tracking PV Plants. Progressive Photovoltaics, 16, 529–536.
  • [2] Durán, E., Andújar, J. M , Galán, J., & Sidrach-de-Cardona M. (2009). Methodology and Experimental System for Measuring and Displaying I-V Characteristic Curves of PV Facilities. Progressive Photovoltaics, 17, 574–586.
  • [3] Malik, A. Q., Bin, S. J., & Damit, H. (2003). Outdoor testing of single crystal silicon solar cells. Renewable Energy, 28, 1433–1445.
  • [4] Van, E. E., Gxasheka, A. R., & Meyer, E. L. (2005). Monitoring current-voltage characteristics and energy output of silicon photovoltaic modules. Renewable Energy, 30, 399–411.
  • [5] Kuai, Y., & Yuvarajan, S. (2006). An electronic load for testing photovoltaic panels. Journal of Power Sources,; 154, 308–313.
  • [6] Forero, N., Hernandez, J., & Gordillo, G. (2006). Development of a monitoring system for a PV solar plant. Energy Conversion & Management, 47, 2329–2336.
  • [7] Durán, E., Sidrach-de-Cardona, M., Galán, J., & Andújar, J. M. (2008). Comparative Analysis of Buck-Boost Converters used to obtain I-V Characteristic Curves of PV Modules. IEEE Power Electronics Specialists Conference (PESC), 2036–2042.
  • [8] Durán, E., Galán, J., Sidrach-de-Cardona, M., & Segura, F. (2008). An Application of Interleaved DC-DC Converters to Obtain I-V Characteristics Curves of Photovoltaic Modules. IEEE 34th Annual Conference (IECON), 2284–2289.
  • [9] De Bias, M. A., Torres, J. L., Prieto, E., & Garcia, A. (2002). Selecting a suitable model for characterizing photovoltaic devices. Renewable Energy, 25, 371–380.
  • [10] Piliougine, M., Carretero, J., & Sidrach-de-Cardona, M. (2011). Experimental system for current-voltage curve measurement of photovoltaic modules under outdoor conditions. Progressive Photovoltaics, 19, 591–602.
  • [11] Feng, X., Qing, X., Chung, C. Y., Qiao, H., & Wang, X. A Simple Parameter Estimation Approach to Modeling of Photovoltaic Modules Based on Datasheet Values. ASME Journal of Solar Energy Engineering, 138, 051010.
  • [12] Parlak, K. (2020). Obtaining electrical characteristics of a PV module by FPGA based experimental system. International Journal of Hydrogen Energy, 45, 33128-33135.
  • [13] Zhu, W., Shang, L., Li, P., & Guo, H. (2018). Modified hill climbing MPPT algorithm with reduced steadystate oscillation and improved tracking efficiency. The J. Engineering, 17, 1878–1883.
  • [14] Abdelsalam, A. K., Massoud, A. M., Ahmed, S., & Enjeti, P. N. (2011). High-performance adaptive perturb and observe MPPT technique for photovoltaic based microgrids. IEEE Trans. Power Electronics, 26(4), 1010–1021.
  • [15] Elgendy, M. A., Zahawi, B., & Atkinson, D. J. (2013). Assessment of the incremental conductance maximum power point tracking algorithm. IEEE Trans. Sustainable Energy, 4(1), 108–117.
  • [16] Tey, K. S., & Mekhilef, S. (2014). Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation. IEEE Trans. Industrial Electronics, 61(10), 5384–5392.