Süreç Hatalarının Analizinde Taksonomi Yöntemini Temel Alan Yeni Bütünleşik Tereddütlü Bulanık Yöntem Önerisi

Siparişe özel üretim sistemlerinde üretim aşamasına geçmeden önce mühendislik ve tasarım faaliyetlerinin gerçekleştirildiği sipariş işleme süreci firmaların kilit görevi gören süreçlerinin başında gelmektedir. Bu sürecin verimliliği sonraki aşamalar için oldukça önemlidir. Bu çalışmada, otomotiv sektöründe yer alan bir firmada mühendislik ve tasarım faaliyetlerinin gerçekleştirildiği sipariş işleme sürecinde ortaya çıkan hataların azaltılmasına yönelik Yeni Bütünleşik Tereddütlü Bulanık Entropi Tabanlı Geliştirilmiş Taksonomi Yöntemi önerilmiştir. Çalışmanın amacı, sipariş işleme sürecindeki mühendislik ve tasarım çalışmalarının tekrar edilmesine sebep olan hataların kaynaklandığı bölümleri önem düzeylerine göre sıralamaktır. Önerilen yöntemde, kriterlerin farklı karar vericiler tarafından değerlendirilmesi ve karar vericilerin kendi görüşlerinde net olmaması gibi nedenlerle tereddütlü bulanık sayılar kullanılmıştır. Kriterlerin önem ağırlıklarını bulmak amacıyla Tereddütlü Bulanık Entropi Yöntemi kullanılmıştır. Hataların kaynaklandığı bölümlerin önem düzeylerine göre sıralanmasında birbirinden bağımsız kriterlerin bulunduğu durumlarda kullanılan taksonomi yöntemi geliştirilmiş şekliyle uygulanmıştır. Önerilen yeni bütünleşik yöntem ile elde edilen sonuçlar farklı yöntemler ile karşılaştırılmış ve sıralamalar arasında istatistiksel bir fark olup olmadığını gözlemlemek amacıyla Spearman Rank Korelasyon uygulanmıştır. Çalışmanın ilgili literatüre iki önemli katkısı bulunmaktadır. Birincisi, belirsizlik içeren bir yapıda bulunan veride düzensiz bilginin ortadan kaldırması, ikincisi ise süreç verimliliğinin arttırılmasına yönelik yeni bir yöntem geliştirilmiş olmasıdır.

A Novel Integrated Hesitant Fuzzy Method for Process Failure Analysis Based on Taxonomy Method

In make-to-order systems, order processing, in which engineering and design activities are carried out before the production phase, is one of the leading key processes of the companies. The efficiency of this process is very important for the next stages. In this study, a New Integrated Hesitant Fuzzy Entropy Based Improved Taxonomy Method is proposed to reduce the failures occurring in order processing in which engineering and design activities are carried out of a company operating in the automotive industry. The aim of the study is to rank the departments causing failures that lead to the repetition of engineering and design activities in order processing according to their importance levels. In the proposed method, hesitant fuzzy numbers are used because of reasons such as the criteria have been evaluated by different decision makers. Hesitant Fuzzy Entropy Method is used to find the importance weights of the criteria. At ranking the departments leading to failures according to their importance levels, the taxonomy method, used in cases where there are independent criteria from each other is applied in its developed form. The results obtained with the proposed new integrated method are compared with different methods and the Spearman Rank Correlation is applied to observe whether there is a statistical difference between the rankings. The study has two important contributions to the related literature. The first one is the elimination of disordered information in uncertain structured data and the second one is the development of a new method to increase process efficiency.

___

  • [1] Zhang, H., Gu, C., Gu, L. ve Zhang, Y. (2011). The Evaluation of Tourism Destination Competitiveness by TOPSIS & Information Entropy a case in the Yangtze River Delta of China. Tourism Management, 32, 443-451.
  • [2] Alinezhad, A. ve Khalili, J. (2019). New Methods and Applications in Multiple Attribute Decision Making (MADM). International Series in Operations Research & Management Science, 277, 73-79.
  • [3] Uthayakumar, R. ve Rameswari, M. (2012). An integrated inventory model for a single vendor and single buyer with order-processing cost reduction and process mean. Int. J. Prod. Res., 50 (11), 2910-2924.
  • [4] Acero, R., Torralba, M., Pérez-Moya, R. ve Pozo, J.A. (2019). Value Stream Analysis in Military Logistics: The Improvement in Order Processing Procedure. Applied Sciences, 10 (1), 106.
  • [5] Toklu, M.C., Erdem, M.B. ve Taşkın, H. (2016). A fuzzy sequential model for realization of strategic planning in manufacturing firms. Comput. Ind. Eng., 102, 512-519.
  • [6] Yadav, G., Seth, D. ve Desai, T.N. (2018). Application of hybrid framework to facilitate lean six sigma implementation: a manufacturing company case experience. Production Planning & Control, 29 (3), 185-201.
  • [7] Tian, Z.P., Wang, J.Q. ve Zhang, H.Y. (2018). An integrated approach for failure mode and effects analysis based on fuzzy best-worst, relative entropy, and VICOR methods. Appl. Soft Comput., 72, 636-646.
  • [8] Gupta, A., Sharma, P., Jain, A., Xue, H., Malik, S.C. ve Jha, P.C. (2019). An integrated DEMATEL Six Sigma hybrid framework for manufacturing process improvement. Annals of Operations Research, 1-41.
  • [9] Akbar, M. A., Alsanad, A., Mahmood, S. ve Alothaim, A. (2021). A multicriteria decision making taxonomy of IoT security challenging factors. IEEE Access, 9, 128841-128861.
  • [10] Rafi, S., Akbar, M. A., AlSanad, A. A., AlSuwaidan, L., Abdulaziz AL-ALShaikh, H., ve AlSagri, H. S. (2022). Decision-making taxonomy of devops success factors using preference ranking organization method of enrichment evaluation, Mathematical Problems in Engineering, 2022, 1-15.
  • [11] Khan, A. A., Shameem, M., Nadeem, M., ve Akbar, M. A. (2021). Agile trends in Chinese global software development industry: Fuzzy AHP based conceptual mapping, Applied Soft Computing, 102, 107090.
  • [12] Jing, D., Imeni, M., Edalatpanah, S. A., Alburaikan, A., ve Khalifa, H. A. E. W. (2023). Optimal selection of stock portfolios using multi-criteria decision-making methods, Mathematics, 11(2), 415.
  • [13] Yang, G., Ren, M., ve Hao, X. (2023). Multi-criteria decision-making problem based on the novel probabilistic hesitant fuzzy entropy and TODIM method, Alexandria Engineering Journal, 68, 437-451.
  • [14] Deveci, M., Öner, S. C., Ciftci, M. E., Özcan, E., ve Pamucar, D. (2022). Interval type-2 hesitant fuzzy Entropy-based WASPAS approach for aircraft type selection, Applied Soft Computing, 114, 108076.
  • [15] Wan, S. P., Zou, W. C., Zhong, L. G., & Dong, J. Y. (2020). Some new information measures for hesitant fuzzy PROMETHEE method and application to green supplier selection, Soft Computing, 24, 9179-9203.
  • [16] Başar, A. (2017). Klasik ve sezgisel bulanık ikili karşılaştırma ile yazılım geliştirme projelerinin maliyet tahmini: uygulama örneği. Bilişim Teknolojileri Dergisi, 10 (2), 129–129.
  • [17] Adar, T. ve Kılıç, E. (2018). Banka sektöründe insan hata analizi için yeni bir bütünleşik yöntem: İFASS&ÇK-KBDTK. Ergonomi, 1 (2), 108–122.
  • [18] Rodriguez, R.M., Martinez, L., Torra, V., Xu, Z.S. ve Herrera, F. (2014). Hesitant fuzzy sets: State of the art and future directions. Int. J. Intell. Syst., 29 (2), 495–524.
  • [19] Xia, M. ve Xu, Z. (2011). Hesitant fuzzy information aggregation in decision making, Int. J. Approximate Reasoning, 52, 395–407.
  • [20] Xu, Z. ve Xia, M. (2012). Hesitant Fuzzy Entropy and Cross-Entropy And Their Use in Multiattribute Decision-Making. Int. J. Intell. Syst., 27, 799–822.
  • [21] Ömürbek, N. ve Aksoy, E. (2016). Bir Petrol Şirketinin Çok Kriterli Karar Verme Teknikleri ile Performans Değerlendirmesi. Süleyman Demirel Üniversitesi İktisadi ve İdari Bilimler Fakültesi Dergisi, 21 (3), 723-756.
  • [22] Adanson, M. (1763). Familles des plantes par M. Adanson.. (Vol. 1). chez Vincent.
  • [23] Hellwing, Z. (1968). Application of the taxonomic method in typological division of countries based on the level of their development and resources as well as skilled employees structure, Przegld Statystyczny, 4, 307-326.