Akış Parametrelerinin Termoelektrik Modüldeki Isı Transferi ve Sıcaklık Dağılımı Üzerine Etkileri

Bu çalışmada, sıcak hava giriş hızı ve sıcak hava giriş sıcaklığının bir termoelektrik modülün (TEM) sıcak yüzey sıcaklığına, sıcak ve soğuk yüzeyler arasındaki sıcaklık farkına ve sıcak yüzeydeki ısı transfer hızına etkisi hesaplamalı akışkanlar dinamiği (HAD) analizleri ile incelenmiştir. HAD analizleri sonucunda TEM'in maksimum sıcak taraf sıcaklığı, sıcak ve soğuk yüzey arasındaki sıcaklık farkı ve sıcak yüzeydeki ortalama ısı transfer hızı 15 m/s sıcak hava giriş hızında sırasıyla 274,9 °C, 70,4 °C ve 33,8 W olarak bulunmuştur. Diğer taraftan, TEM'in maksimum sıcak yüzey sıcaklığı, sıcak ve soğuk yüzeyler arasındaki sıcaklık farkı ve sıcak yüzeydeki ortalama ısı transfer hızı 15 m/s sıcak hava giriş hızı ve 800 °C sıcak hava giriş sıcaklığı için sırasıyla 432,8 °C, 114,9 °C ve 55,1 W olarak belirlenmiştir. Sonuç olarak, sıcak hava giriş hızının ve giriş sıcaklığının artması, TEM'in sıcak yüzey sıcaklığını, sıcak ve soğuk yüzeyler arasındaki sıcaklık farkını ve sıcak yüzeydeki ısı transfer hızını artırmıştır.

Effects of Flow Parameters on Heat Transfer and Temperature Distribution of a Thermoelectric Module

The effects of the hot air inlet velocity and hot air inlet temperature on the hot side temperature, the temperature difference between the hot and cold sides, and the heat transfer rate on the hot side of a thermoelectric module (TEM) were investigated by computational fluid dynamics (CFD) analyzes. As a result of CFD analysis, the maximum hot side temperature, the temperature difference between the hot and cold sides, and the average heat transfer rate on the hot side of the TEM are found to be 274.9 °C, 70.4 °C, and 33.8 W, respectively, at 15 m/s of hot air inlet velocity. Besides, the maximum hot side temperature, the temperature difference between the hot and cold sides, and the average heat transfer rate on the hot side of the TEM are determined to be 432.8 °C, 114.9 °C, and 55.1 W, respectively, for 800 °C of hot air inlet temperature at 15 m/s of hot air inlet velocity. As a result, increasing the hot air inlet velocity and inlet temperature increases the hot side temperature, the temperature difference between the hot and cold sides, and the heat transfer rate on the hot side of the TEM.

___

  • [1] Chein, R., Huang, G. Thermoelectric cooler application in electronic cooling. Applied Thermal Engineering, 24 (14–15), 2207–2217 (2004).
  • [2] Riffat, S. B., Ma, X. Thermoelectrics: A review of present and potential applications. Applied Thermal Engineering, 23 (8), 913–935 (2003).
  • [3] Xu, X., Dessel, S. V., Messac, A. Study of the performance of thermoelectric modules for use in active building envelopes. Building and Environment, 42 (3), 1489–1502 (2007).
  • [4] Rowe, D. M., Min, G. Evaluation of thermoelectric modules for power generation. Journal of Power Sources, 73 (2), 193–198 (1998).
  • [5] Hsiao, Y. Y., Chang, W. C., Chen, S. L. A mathematic model of thermoelectric module with applications on waste heat recovery from automobile engine. Energy, 35 (3), 1447–1454 (2010).
  • [6] Champier, D., Bedecarrats, J. P., Rivaletto, M., Strub, F. Thermoelectric power generation from biomass cook stoves. Energy, 35 (2), 935–942 (2010).
  • [7] Ploteau, J. P., Glouannec, P., Noel, H. Conception of thermoelectric flux meters for infrared radiation measurements in industrial furnaces. Applied Thermal Engineering, 27 (2–3), 674–681 (2007).
  • [8] Chen, W. H., Wang, C. M., Huat Saw, L., Hoang, A. T., Bandala, A. A. Performance evaluation and improvement of thermoelectric generators (TEG): Fin installation and compromise optimization. Energy Conversion and Management, 250, 114858 (2021).
  • [9] Martínez, A., Astrain, D., Rodríguez, A. Dynamic model for simulation of thermoelectric self-cooling applications. Energy, 55, 1114–1126 (2013).
  • [10] Bell, L. E. Cooling, Heating, Generating Heat with and Recovering Waste Thermoelectric. Science, 321 (5895), 1457–1461 (2008).
  • [11] Temizer, I., Ilkiliç, C. The performance and analysis of the thermoelectric generator system used in diesel engines. Renewable and Sustainable Energy Reviews, 63, 141–151 (2016).
  • [12] He, W., Wang, S., Lu, C., Li, Y., Zhang, X. An optimization analysis of thermoelectric generator structure for different flow directions of working fluids. Energy Procedia, 61, 718–721 (2014).