Kalp Kası Enfeksiyonlarına Yönelik Üç Boyutlu Biyofonksiyonel Doku İskelesi Üretimi ve Karakterizasyonu

Miyokardit, kalp kası iltihabı olarak tanımlanır ve akut yetmezlik vakalarının %10' unu oluşturur. Kalp kası iltihaplanmalarının oluşmasına başta virüsler olmak üzere bakteri, mantar ve otoimmün hastalıklar sebep olmaktadır. Doku mühendisliği, herhangi bir nedenle yapısı bozulmuş biyolojik dokuları yeniden eski haline getirmeyi, yapısal ve fonksiyonel özelliklerini onarmayı amaçlayan multidisipliner bir bilim dalıdır. Bu çalışmada, kalp kası enfeksiyonlarına yönelik doku mühendisliği yaklaşımı ile kurkumin (KUR) yüklü üç boyutlu polilaktik asit (PLA) doku iskeleleri üretilmiş ve morfolojik, kimyasal, mekanik ve biyolojik özellikler bakımından test edilmişlerdir. Kurkuminin etkisini incelemek için üç farklı miktar (10, 15 ve 20 mg) %17 PLA içerisine eklenip, üç boyutlu doku iskeleleri üretilmiştir. Taramalı elektron mikrsokop (SEM) ile yapılan morfolojik analizler, tüm iskele yapılarının homojen por dağılımına sahip olduklarını göstermiştir. Fourier dönüşümlü kızılötesi spektroskopisi (FTIR) ile yapılan kimyasal analiz sonucunda kurkumin eklenmesinin matriks yapıya ait pikleri kaydırdığı gözlenmiştir. Çekme testi sonuçları incelendiğinde kurkumin eklenmesinin %17 PLA’ nın çekme dayanımını arttırdığı gözlenmiş ve en yüksek çekme dayanımı 20 mg kurkumin içeren doku iskelesine ait olarak bulunmuştur. H9C2 kardiyomiyosit hücre hattı ile yapılan 1, 3 ve 7 günlük MTT testi sonuçlarına bakıldığında, en yüksek hücre canlılığı 15 mg kurkumin içeren iskeleye ait olarak bulunmuştur.

___

  • [1] Ayhan, E., Işık, T. MİYOKARDİT. Balıkesir Sağlık Bilimleri Dergisi, 1, (2012).
  • [2] Feldman, A.M., McNamara, D. Myocarditis. N Engl J Med., 343 (19), 1388-98, (2000).
  • [3] Ramanan, V., Scull, M. A., Sheahan, T. P., Rice, C. M., Bhatia, S. N. New Methods in Tissue Engineering: Improved Models for Viral Infection. Annu. Rev. Virol., 1:475–99, (2014).
  • [4] Blauwet, L. A., Cooper, L.T. Myocarditis. Progress in Cardiovascular Diseases, 52, 274-88, (2010).
  • [5] Brady, W.J., Ferguson, J.D., Ullman, E.A., Perron, A.D. Myocarditis: emergency department recognition and management. Emerg Med Clin North Am., 22 (4): 865-85, (2004).
  • [6] Liu, P.P., Schultheiss, H.P. Myocarditis. In: Braunwald’s heart disease: a textbook of cardiovascular medicine. Philadelphia, 2, 1784-5, (2008).
  • [7] Lanza, R. Methods of Tissue Engineering, Elsevier, 23-29, 463-471, 2006.
  • [8] Kular, J. K., Basu, S., Sharma, R. The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. Journal of Tissue Engineering, 5: 1–17, (2014).
  • [9] Kitsara, M., Agbulut, O., Kontziampasis, D., Chen, Y., Menasché, P. Fibers for hearts: A critical review on electrospinning for cardiac tissue engineering, Acta Biomaterialia, 48, (2017).
  • [10] Graupner, N., Herrmann, A. S., Müssig, J. Natural and man-made cellulose fibre-reinforced poly(lactic acid) (PLA) composites: An overview about mechanical characteristics and application areas, Composites Part A: Applied Science and Manufacturing, 40 (6–7), (2009).
  • [11] Cesur, S., Ulag, S., Ozak, L., Gumussoy, A., Arslan, S., Yilmaz, B. K., Ekren, N., Agirbasli, M., Gunduz, O. Production and characterization of elastomeric cardiac tissue-like patches for Myocardial Tissue Engineering. Polymer Testing, 90, 106613, (2020).
  • [12] Aggarwal, B.B., Sundaram, C., Malani, N., Ichikawa, H., Kurkumin: the Indian solid gold, in The molecular targets and therapeutic uses of kurkumin in health and disease. Springer. p. 1-75, (2007).
  • [13] Shen, L., Ji, H.-F. Theoretical study on physicochemical properties of kurkumin, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 67, 619-623, (2007).
  • [14] Spadaccio, C., Chello, M., Trombetta, M., Rainer, A., Toyoda, Y. and Genovese, J.A. Drug releasing systems in cardiovascular tissue engineering. Journal of Cellular and Molecular Medicine, 13: 422-439, (2009).
  • [15] Song, Y., Ge, W., Cai, H., Zhang, H. Curcumin protects mice from coxsackievirus B3-induced myocarditis by inhibiting the phosphatidylinositol 3 kinase/Akt/nuclear factor-κB pathway. J Cardiovasc Pharmacol Ther., 18 (6): 560-9, (2013).
  • [16] Aki, D., Ulag, S., Unal, S., Sengor, M., Ekren, N., Lin, CC., Yılmazer, H., Ustundag, C. B., Kalaskar, D. M., Gunduz, O. 3D printing of PVA/hexagonal boron nitride/bacterial cellulose composite scaffolds for bone tissue engineering. Materials & Design, 196, 109094, (2020).
  • [17] Ayran, M., Dirican, A. Y., Saatcioglu, E., Ulag, S., Sahin, A., Aksu, B., Croitoru, AM., Ficai, D., Gunduz, O., Ficai, A. 3D-Printed PCL Scaffolds Combined with Juglone for Skin Tissue Engineering. Bioengineering, 9(9), 427, (2022).
  • [18] Ulag, S., Sahin, A., Guncu, M.M., Aksu, B., Ekren, N., Sengor, M., Kalaskar, DM., Gunduz, O. A novel approach to treat the Thiel-Behnke corneal dystrophy using 3D printed honeycomb-shaped polymethylmethacrylate (PMMA)/Vancomycin (VAN) scaffolds. Bioprinting, 24, e00173, (2021).
  • [19] Ulag, S., Uysal, E., Bedir, T., Sengor, M., Ekren, N., Ustundag, C. B., Midha, S., Kalaskar, DM., Gunduz, O. Recent developments and characterization techniques in 3D printing of corneal stroma tissue. Polym Adv Technol., 32:3287–3296, (2021).
  • [20] Altan, E., Karacelebi, Y., Saatcioglu, E., Ulag, S., Sahin, A., Aksu, B., Croitoru, AM., Codrea, C. I., Ficai, D., Gunduz, O., Ficai, A. Fabrication of Electrospun Juglans regia (Juglone) Loaded Poly(lactic acid) Scaffolds as a Potential Wound Dressing Material. Polymers, 14 (10), 1971, 2022.
  • [21] Mai, T. T. T., Nguyen, T.T.T., Le, Q. D., Nguyen, T. N., Ba, T. C., Nguyen, H. B., Phan, T. B. H., Tran, D. L., Nguyen, X. P., Park, J. S. A novel nanofiber Cur-loaded polylactic acid constructed by electrospinning. Adv. Nat. Sci: Nanosci. Nanotechnol., 3, 025014, (2012).
  • [22] Ranjeth Kumar Reddy, T., Kim, HJ. Mechanical, Optical, Thermal, and Barrier Properties of Poly (Lactic Acid)/Curcumin Composite Films Prepared Using Twin-Screw Extruder. Food Biophysics, 14, 22–29, (2019).
  • [23] Ilhan, E., Ulag, S., Sahin, A., Yilmaz, B. K., Ekren, N., Kilic, O., Sengor, M., Kalaskar, D. M., Oktar, F. N., Gunduz, O. Fabrication of tissue-engineered tympanic membrane patches using 3D-Printing technology. Journal of the mechanical behavior of biomedical materials, 114 104219, (2021).
  • [24] Croitoru, AM., Karaçelebi, Y., Saatcioglu, E., Altan, E., Ulag, S., Aydoğan, H. K., Sahin, A., Motelica, L., Oprea, O., Tihauan, B. M., Popescu, RM., Savu, D., Trusca, R., Ficai, D., Gunduz, O., Ficai, A. Electrically triggered drug delivery from novel electrospun poly (lactic acid)/graphene oxide/quercetin fibrous scaffolds for wound dressing applications. Pharmaceutics, 13(7), 957, (2021).
  • [25] Chhabra, P., Tyagi, P., Bhatnagar, A., Mittal, G., Kumar, A. Optimization, characterization, and efficacy evaluation of 2% chitosan scaffold for tissue engineering and wound healing. J Pharm Bioallied Sci., 8(4): 300-308, (2016).
  • [26] Karuppannan, S. K., Raghavendra, R., SB Mohamed, K., Shazia Anjum, M., Mohammed Junaid Hussain D., Ganesh, MR., Kantha Deivi, A. Copper oxide nanoparticles infused electrospun polycaprolactone/gelatin scaffold as an antibacterial wound dressing. Materials Letters, 294: 129787, (2021).
  • [27] Somayeh Baghersad, S., Hajir B., Marziyeh Ranjbar, M., Mohammad Reza Mohaddes M., Peiman Brouki, Milan. Development of biodegradable electrospun gelatin/aloe-vera/poly(ε‑caprolactone) hybrid nanofibrous scaffold for application as skin substitutes. Materials Science and Engineering: C, 93, 367-379, (2018).
  • [28] Saatcioglu, E., Koyun, M., Ulag, S., Sahin, A., Yilmaz, B.K., Aksu, B., Gunduz, O. 3D printing of Osage orange extract/Chitosan scaffolds for soft tissue engineering. Food Hydrocolloids for Health, 1, 100039, (2022).
  • [29] Saylam, E., Akkaya, Y., Ilhan, E., Cesur, S., Guler, E., Sahin, A., Cam, M. E., Ekren, M., Oktar, F. N., Gunduz, O., Ficai, D., Ficai, A. Levodopa-Loaded 3D-Printed Poly (Lactic) Acid/Chitosan Neural Tissue Scaffold as a Promising Drug Delivery System for the Treatment of Parkinson’s Disease. Appl. Sci., 11(22), 10727, (2021).