Bir Reküperatörün Basınç Düşüşleri ve İşletme Maliyetleri Göz önünde bulundurularak Teknoekonomik Optimizasyonu

Bu çalışmada, hedeflenen sıcaklık aralığında çalışan bir gazdan gaza ısı değiştiricinin (reküperatör) ısı transferi ve maliyet optimizasyonu yapılmıştır. Öncelikle atık ısı kaynağının termofiziksel özellikleri ve akışların hacimsel debileri elde edilerek geri kazanılabilecek maksimum ısı elde edilmiştir. Daha sonra reküperatörü boyutlandırmak için parametrik bir çalışma yapılmıştır. Sıcak akış ve soğuk akış çıkış sıcaklıkları gibi maliyeti etkileyen parametreler, toplam ısı transfer katsayısı, etkinlik ve basınç düşüşü dikkate alınarak belirlendi. Son olarak, parametrik çalışmadan elde edilen termal parametreler teknoekonomik analizde kullanılmıştır. En yüksek tasarruf katsayısına sahip reküperatör geometrisi, yatırım ve işletme maliyetleri dikkate alınarak belirlenmiştir. Sonuç olarak, 108. Simülasyonda elde edilen geometrideki reküperatörün 321.19 m2 ısı transfer yüzey alanı ile yılda 653 252 $ ile maksimum tasarruf sağlayabileceği tespit edilmiştir.

Technoeconomic Optimization of a Recuperator Considering Pressure Drops And Operating Costs

In this study, heat transfer and cost optimization of a gas-to-gas heat exchanger (recuperator) operating in the targeted temperature range has been made. Firstly, the thermophysical properties of the waste heat source and the volumetric flow rates of the flows were obtained, and the maximum heat that could be recovered was obtained. Afterward, a parametric study was carried out to size the recuperator. The parameters affecting the cost, such as hot flow and cold flow outlet temperatures, were determined by the overall heat transfer coefficient, effectiveness, and pressure drop. Finally, the thermal parameters obtained from the parametric study are used in the technoeconomic analysis. The recuperator geometry with the maximum saving coefficient was determined considering investment and operating costs. As a result, the 108th simulation resulted in maximum savings with 653 252 $/year using 321.19 m2 heat transfer surface area.

___

  • [1] Pashchenko D, Nikitin M. Forging furnace with thermochemical waste-heat recuperation by natural gas reforming: Fuel saving and heat balance. Int J Hydrogen Energy 2021;46:100–9. https://doi.org/10.1016/j.ijhydene.2020.09.228.
  • [2] Pashchenko D. How to choose endothermic process for thermochemical waste-heat recuperation? Int J Hydrogen Energy 2020;45:18772–81. https://doi.org/10.1016/j.ijhydene.2020.04.279.
  • [3] Wang RQ, Jiang L, Wang YD, Roskilly AP. Energy saving technologies and mass-thermal network optimization for decarbonized iron and steel industry: A review. J Clean Prod 2020;274:122997. https://doi.org/10.1016/j.jclepro.2020.122997.
  • [4] Kayabasi E, Kurt H. Simulation of heat exchangers and heat exchanger networks with an economic aspect. Eng Sci Technol an Int J 2018;21:70–6. https://doi.org/10.1016/j.jestch.2018.02.006.
  • [5] Tom B, Kayabasi E. Design and simulation of a microchannel heat exchanger for cooling a micro processor using ethylene. El-Cezeri J Sci Eng 2021;8:1243–53. https://doi.org/10.31202/ecjse.909855.
  • [6] Seong BG, Hwang SY, Kim KY. High-temperature corrosion of recuperators used in steel mills. Surf Coatings Technol 2000;126:256–65. https://doi.org/10.1016/S0257-8972(00)00523-5.
  • [7] Dawood TA, Raphael R, Barwari I, Akroot A. Solar Energy and Factors Affecting the Efficiency and Performance of Panels in Erbil / Kurdistan Solar Energy and Factors Affecting the Efficiency and Performance of Panels in Erbil / Kurdistan. Int J Heat Technol 2023;41:304–12. https://doi.org/10.18280/ijht.410203.
  • [8] Bdaiwi M, Akroot A, Abdul Wahhab HA, Assaf YH, Nawaf MY, Talal W. Enhancement Heat exchanger performance by insert dimple surface ball inside tubes: A review. Results Eng 2023;19:101323. https://doi.org/10.1016/J.RINENG.2023.101323.
  • [9] Kareem AF, Akroot A, Wahhab HAA, Talal W, Ghazal RM, Alfaris A. Exergo – Economic and Parametric Analysis of Waste Heat Recovery from Taji Gas Turbines Power Plant Using Rankine Cycle and Organic Rankine Cycle. Sustainability 2023;15:9376.
  • [10] Shafiey Dehaj M, Hajabdollahi H. Fin and tube heat exchanger: Constructal thermo-economic optimization. Int J Heat Mass Transf 2021;173:121257. https://doi.org/10.1016/j.ijheatmasstransfer.2021.121257.
  • [11] Söylemez MS. On the thermoeconomical optimization of heat pipe heat exchanger HPHE for waste heat recovery. Energy Convers Manag 2003;44:2509–17. https://doi.org/10.1016/S0196-8904(03)00007-4.
  • [12] Manjunath K, Sharma OP, Kaushik SC. Entropy generation and thermoeconomic analysis of printed circuit heat exchanger using different materials for supercritical CO2 based waste heat recovery. Mater Today Proc 2020;21:1525–32. https://doi.org/10.1016/j.matpr.2019.11.077.
  • [13] Sahin B, Ust Y, Teke I, Erdem HH. Performance analysis and optimization of heat exchangers: a new thermoeconomic approach. Appl Therm Eng 2010;30:104–9. https://doi.org/10.1016/j.applthermaleng.2009.07.004.
  • [14] Maghsoudi P, Sadeghi S, Khanjarpanah H, Gorgani HH. A comprehensive thermo-economic analysis, optimization and ranking of different microturbine plate-fin recuperators designs employing similar and dissimilar fins on hot and cold sides with NSGA-II algorithm and DEA model. Appl Therm Eng 2018;130:1090–104. https://doi.org/10.1016/j.applthermaleng.2017.11.087.
  • [15] Liu Z, Cheng H. Multi-objective optimization design analysis of primary surface recuperator for microturbines. Appl Therm Eng 2008;28:601–10. https://doi.org/10.1016/j.applthermaleng.2007.04.010.
  • [16] Hu H, Guo C, Cai H, Jiang Y, Liang S, Guo Y. Dynamic characteristics of the recuperator thermal performance in a S–CO2 Brayton cycle. Energy 2021;214:119017. https://doi.org/10.1016/j.energy.2020.119017.
  • [17] Chen H, Liu Y wen. A new optimization concept of the recuperator based on Hampson-type miniature cryocoolers. Energy 2021;224:120091. https://doi.org/10.1016/j.energy.2021.120091.
  • [18] Siemens. Simcenter Flomaster TM User Guide. 2020.
  • [19] Cengel YA. Heat Transfer: A Practical Approach. 2nd ed. McGraw-Hill; 2003.
  • [20] Kardos J, Strelow O, Walde R. Bewertung und Optimierung des Wärmerückgewinns in Rekuperatorsystemen. Chem Tech 1983;35:71–4.
  • [21] Yuksel YE, Ozturk M. Thermodynamic and thermoeconomic analyses of a geothermal energy based integrated system for hydrogen production. Int J Hydrogen Energy 2017;42:2530–46. https://doi.org/10.1016/j.ijhydene.2016.04.172.
  • [22] Tozlu A, Kayabasi E, Ozcan H. Thermoeconomic analysis of a low-temperature waste-energy assisted power and hydrogen plant at off-NG grid region. Sustain Energy Technol Assessments 2022;52:102104. https://doi.org/10.1016/j.seta.2022.102104.
  • [23] Tozlu A, Abuşoğlu A, Özahi E. Thermoeconomic analysis and optimization of a Re-compression supercritical CO2 cycle using waste heat of Gaziantep Municipal Solid Waste Power Plant. Energy 2018;143:168–80. https://doi.org/https://doi.org/10.1016/j.energy.2017.10.120.
  • [24] Zhang Q, Ogren RM, Kong SC. Thermo-economic analysis and multi-objective optimization of a novel waste heat recovery system with a transcritical CO2 cycle for offshore gas turbine application. Energy Convers Manag 2018;172:212–27. https://doi.org/10.1016/j.enconman.2018.07.019.
  • [25] Ozcan H, Kayabasi E. Thermodynamic and economic analysis of a synthetic fuel production plant via CO2 hydrogenation using waste heat from an iron-steel facility. Energy Convers Manag 2021;236:114074. https://doi.org/10.1016/j.enconman.2021.114074.
  • [26] Xiao G, Yang T, Liu H, Ni D, Ferrari ML, Li M, et al. Recuperators for micro gas turbines: A review. Appl Energy 2017;197:83–99. https://doi.org/10.1016/j.apenergy.2017.03.095.
  • [27] Reznicek EP, Neises T, Braun RJ. Optimization and techno-economic comparison of regenerators and recuperators in sCO2 recompression Brayton cycles for concentrating solar power applications. Sol Energy 2022;238:327–40. https://doi.org/10.1016/j.solener.2022.03.043.