Sıkıştırma ile Ateşlemeli Motorlarda Bilgisayar Destekli Enerji ve Ekserji Analizi

Kaynakları daha verimli kullanmanın en iyi yolu, enerji ve ekserji arasındaki ilişkiyi anlamaktır. Termodinamiğin birinci kanunu enerji analizi ile ilişkilidir. Bu kanun enerjinin niceliği ile alakalıdır. Enerji analizi sistemin enerji ve entalpi transferlerini açıklamaya yardımcı olur. Enerji yok edilemezken ekserji yok edilebilir. Ekserji bir sistemden elde edilebilecek maksimum teorik iş olarak tanımlanır. Diğer taraftan ekserji analizi termodinamiğin ikinci yasasına dayanır. Termodinamiğin ikinci kanunu enerjinin niteliği ile alakalıdır. Bir sistemin kullanılabilirliği ekserji analizi ile belirlenebilir. Bir sistemin termodinamik detaylarının belirlenmesi istenildiğinde hem enerji, hem de ekserji analizi yapılmalıdır. Ekserji ve enerji analizleri çeşitli alanlara uygulanabilir. Ekserji analizi, içten yanmalı motorlar konusunda önemli bir rol oynamaktadır. Bu çalışmada enerji ve ekserji analizi yapabilen bir programın tanıtımı ve yapısı gösterilmiştir. Program sayesinde hızlı ve güvenilir sonuçlar elde edilebilecektir.

Computer Aided Energy and Exergy Analysis in Compression Ignition Engines

The best way of using the resources more efficiently is understanding the relationship between energy and exergy. The first law of thermodynamics associates with the energy analysis. This law of thermodynamics is about quantity of energy. Energy analysis helps explaining the energy and enthalpy transfers of the system. Energy cannot be destroyed but exergy can be destroyed.  Exergy is defined as the maximum theoretical work obtained from a system. On the other hand, the exergy analysis is based on the second law of thermodynamic. The second law of thermodynamics is about quality of energy. The availability of the system can be described by the exergy analysis. If the thermodynamic details of a system want to be known, both energy and exergy analysis have to be applied to system. Energy and exergy analyses are applied in different fields. Exergy analysis has an important role in internal combustion engines. In this study, introduction and structure of an energy and exergy analysis program will be showed. This program will provide fast and reliable results.

___

  • Ozkan, M. (2015). A Comparative Study on Energy and Exergy Analyses of a CI Engine Performed with Different Multiple Injection Strategies at Part Load: Effect of Injection Pressure. Entropy,. 17(1): p. 244-263.
  • Tsatsaronis, G. (1993). Thermoeconomic Analysis and Optimization of Energy-Systems. Progress in Energy and Combustion Science, 19(3): p. 227-257.
  • Gharehghani, A., Hosseini, R., Mirsalima, M. ve Yusaf T. F. (2015). A comparative study on the first and second law analysis and performance characteristics of a spark ignition engine using either natural gas or gasoline. Fuel, 158: p. 488-493.
  • Jena, J. ve Misra, R., D. (2014). Effect of fuel oxygen on the energetic and exergetic efficiency of a compression ignition engine fuelled separately with palm and karanja biodiesels. Energy, 68: p. 411-419.
  • Nieminen, J. ve Dincer, I. (2010). Comparative exergy analyses of gasoline and hydrogen fuelled ICEs. International Journal of Hydrogen Energy, 35(10): p. 5124-5132.
  • López, I., Quintana, C. E., Ruiz, J.J., Cruz-Peragón, F. ve Dorado, M.P. (2014). Effect of the use of olive-pomace oil biodiesel/diesel fuel blends in a compression ignition engine: Preliminary exergy analysis. Energy Conversion and Management, 85: p. 227-233.
  • Gökalp, B., Soyhan, H. S., Saraç, H. İ., Bostan D. ve Şengün. Y. (2009). Biodiesel Addition to Standard Diesel Fuels and Marine Fuels Used in a Diesel Engine: Effects on Emission Characteristics and First- and Second-Law Efficiencies. Energy & Fuels,. 23: p. 1849-1857.
  • Magno, A., Mancaruso, E. ve Vaglieco, B. M. (2015). Effects of a biodiesel blend on energy distribution and exhaust emissions of a small CI engine. Energy Conversion and Management, 96: p. 72-80.
  • da Costa, Y. J. R., de Lima, A. G. B., Filho, C. R. B. ve Lima, L.A. (2012). Renewable & Sustainable Energy Reviews, 16(7): p. 4651-4660.
  • Kul, B. S. ve Kahraman, A. (2016). Energy and Exergy Analyses of a Diesel Engine Fuelled with Biodiesel-Diesel Blends Containing 5% Bioethanol. Entropy, 18(11).
  • Ghahfarokhi, R. F., Khalilarya, S. ve Ebrahimi, R. (2013). Energy and Exergy Analyses of Homogeneous Charge Compression Ignition Engine. Thermal Science, 17(1): p. 107-117.
  • Jafarmadar, S. and Mansoury, M. (2015). Exergy analysis of air injection at various loads in a natural aspirated direct injection diesel engine using multidimensional model. Fuel, 154: p. 123-131.
  • Jafarmadar, S. ve Nemati, P. (2016). Exergy analysis of diesel/biodiesel combustion in a homogenous charge compression ignition (HCCI) engine using three-dimensional model. Renewable Energy, 99: p. 514-523.
  • Javaheri, A., Esfahanian, V., Salavati-Zadeh, A. ve Darzi, M. (2014). Energetic and exergetic analyses of a variable compression ratio spark ignition gas engine. Energy Conversion and Management, 88: p. 739-748.
  • Kotas, T.J. (1986). Exergy Method of Thermal and Chemical-Plant Analysis. Chemical Engineering Research & Design, 64(3): p. 212-229.
  • Çengel, Y. and M. A. Boles. (2012). Mühendislik Yaklaşımıyla Temodinamik. İstanbul: Güven Bilimsel. 946.