Zn0.96Cu0.01Ni0.03O nanoparçacıkların yapısal ve manyetik özellikleri

Zn0.96Cu0.01Ni0.03O nanoparçacıkları, sol-gel tekniği ile hazırlanıp geniş sıcaklık aralığında (450, 500, 550, 600, 700, 800, 900 ° C) tavlandı. Olası yapısal fazları belirlemek için X-ışını kırınım tekniği (XRD) kullanılmıştır. Kafes parametreleri Rietveld analizi ile hesaplanmış ve tavlama sıcaklıkları ile ilişkilendirilmiştir. Sentezlenen nanoparçacıklar için, optimum tavlama sıcaklıkları 450, 500 ve 550 ° C'de elde edildi ve ayrıca tavlama sıcaklığı artışı ikincil NiO fazlarına yol açmıştır. Taramalı Elektron Mikroskobu (SEM) görüntüleri rastgele küre şeklindeki parçacık dağılımını göstermektedir. Enerji dağıtıcı X-ışını spektroskopisi (EDX) sadece kompozisyona ait pikleri göstermektedir. Zn0.96Cu0.01Ni0.03O nanoparçacıkları için manyetik ölçümler, Kuantum Dizayn Titreşen Örnek Manyetometresi (QDVSM) kullanılarak yapıldı. DC manyetik alana bağlı mıknatıslanma eğrilerinden, tüm Cu-Ni ortak katkılı ZnO nanoparçacıklarının net paramanyetik davranışı gösterildi.

Structure and magnetic properties Zn0.96Cu0.01Ni0.03O nanoparticles

Zn0.96Cu0.01Ni0.03O nanoparticles were prepared by sol-gel technique and annealed under wide temperature range (450, 500, 550, 600, 700, 800, and 900 0C). To figure out the possible structural phases X-ray diffraction technique (XRD) was used. The lattice parameters were calculated by Rietveld analysis and correlated by annealing temperatures. For the synthesized nanoparticles, the optimum annealing temperatures were achieved at 450, 500, and 550 °C and further annealing temperature increment gave rise to secondary NiO peaks. The Scanning Electron Microscope (SEM) images show random ball-shaped particle distribution. Energy dispersive X-ray spectroscopy (EDX) showed only the peaks belong to the composition. Magnetic measurements were performed using Quantum Design Vibrating Sample Magnetometer (QDVSM) tool for Zn0.96Cu0.01Ni0.03O nanosystems. From the DC magnetic field dependent magnetization curves, clear paramagnetic behavior was revealed for all Cu-Ni co-doped ZnO nanoparticles.

___

  • [1] C. Boyraz, N. Doğan, L. Arda, Microstructure and magnetic behavior of (Mg/Ni) co-doped ZnO nanoparticles, Ceramics International, 43 (2017) 15986-15991.
  • [2] A. Korbecka, J.A. Majewski, Low Temp. Phys. 35, 53 (2009)
  • [3] L. Arda, N. Dogan, C.Boyraz,: Effects of Annealing Temperature on Microstructure and Magnetic Properties of Ni0.05Zn0.95Fe2O4 Nanoparticles. J Supercond Nov Magn DOI 10.1007/s10948-017-4203-5.
  • [4] J.T. Prater, S. Ramachandran, A. Tiwari, J. Narayan, J. Electron. Mater. 35, 852 (2006)
  • [5] C. Boyraz, B. Yesilbas, L. Arda. The temperature effect on structural and magnetic properties of Zn0.95Fe0.05O nanoparticles. Journ. of Supercon. Nov. Mag. June 2017, Volume 30, Issue 6, pp 1691–1698.
  • [6] D. Karmakar, S.K. Mandal, R.M. Kadam, P.L. Paulose, A.K. Rajarajan, T.K. Nath, A.K. Das, I. Dasgupta, G.P. Das, Phys. Rev. B 75, 144404 (2007)
  • [7] S. D. Senol, C Boyraz, E Ozugurlu, A Gungor, L Arda, Band Gap Engineering of Mg Doped ZnO Nanorods Prepared by a Hydrothermal Method. Crystal Research and Technology 54 (3), 1800233
  • [8] P. V. Dorpe, V. F. Motsnyi, M. Nijboer, E. Goovaerts, V. I. Safarov, J. Das, W. Van Roy, G. Borghs, J. De Boeck. Highly efficient room temperature spin injection in a metal-insulator-semiconductor light emitting diode. Jpn. J. Appl. Phys. Vol.42 No.5B pp.L502 - L504 (2003)
  • [9] A. Guler, L Arda, N Dogan, C Boyraz, E Ozugurlu, The annealing effect on microstructure and ESR properties of (Cu/Ni) co-doped ZnO nanoparticles. Ceramics International 45 (2), 1737-1745
  • [10] M. Goano, F. Bertazzi, M. Penna, and E. Bellotti, Journal of Applied Physics 102, 083709 (2007).
  • [11] S. D Senol, A Guler, C Boyraz, L Arda, Preparation Structure and Magnetic Properties of Mn-Doped ZnO Nanoparticles Prepared by Hydrothermal Method. Journal of Superconductivity and Novel Magnetism, 1-6
  • [12] A Guler, M Tosun, A Gungor, C Boyraz, L Arda, Effect of Annealing Temperature on Structure and Magnetic Properties of Zn0.94Mg0.01Mn0.05O Nanoparticles. Journal of Superconductivity and Novel Magnetism, 1-8
  • [13] M. Venkatesan, C. B. Fizgerald, J. G. Lunney, J. M. D. Coey, Anisotropic Ferromagnetism in Substituted Zinc Oxide, Phys. Rev. Lett. 93, (2004) 177206.
  • [14] X. X. Liu, F. T. Lin, L. L. Sun, W. J. Cheng, X. M. Ma, W. Z. Shi, Doping concentration dependence of room-temperature ferromagnetism for Ni-doped ZnO thin films prepared by pulsed-laser deposition, Appl. Phys. Lett. 88 (2006) 062508.
  • [15] C. W. Cheng, G. Y. Xu, H. Q. Zhang, Y. Luo, Hydrothermal synthesis Ni-doped ZnO nanorods with room-temperature ferromagnetism, Mater. Lett. 62 (2008) 1617.
  • [16] D. W. Wu, M. Yang, Z. B. Huang, G. F. Yin, X. M. Liao, Y. Q. Kang, X. F. Chen, H. Wang, Preparation and properties of Ni-doped ZnO rod arrays from aqueous solution, J. Colloid Interface Sci. 330, (2009) 380.
  • [17] S. Ghosh, P. Srivastava, B. Pandey, M. Saurav, P. Bharadwaj, D.K. Avasthi, D. Kabiraj, S.M. Shivaprasad, Study of ZnO and Ni-doped ZnO synthesized by atom beam sputtering technique, Appl. Phys. A. 90 (2008) 765.
  • [18] L. Arda, M. Açıkgöz, N. Doğan, D. Akcan, O. Çakıroğlu, Synthesis, characaterization and ESR studies of Zn1-xCox O nanoparticles, J Supercond Nov Magn 27 (2014) 799-804.
  • [19] G. Tang, X. Shi, C. Huo, Z. Wang, Ceramics International , 39, 4825-4829 (2013).
  • [20] M. Zhu, Z. Zhang, M. Zhong, M. Tariq, Y. Li, W. Li, H. Jin, K. Skotnicova, Y. Li, Ceramics International, 43 (3), 3166-3170, (2017).
  • [21] G. Srinivasan, M.S. Seehra, Physica Review B, 29, 6295-6298, (1984).
  • [22] P.M. Ponnusamy, S. Agilan, N. Muthukumarasamy, T.S. Senthil, G. Rajesh, M.R. Venkatraman, Dhayalan Velauthapillai, Materials Characterization, doi: 10.1016/j.matchar.2016.02.020, (2016).
  • [23] M. Tadic, D. Nikolic, M. Patjan, G. R. Blake, Journal of Alloys and Compounds, 647, 1061-1068, (2015).
  • [24 ] H. Gao, D. Gao, J. Zhang, Z. Zhang, G. Yang, Z. Shi, J. Zhang, Z. Zhu, D. Xue, Micro Nano Letter, 7, 5-8, (2012).
  • [25] M. L. Dinesha, H. S. Jayanna, S. Ashoka, G. T. Chandrappa, Journal of Optoelectronics and Advanced Materials, vol. 11, pp. 964-969, (2009).