Grafit ve Ömrünü Tamamlamış Atık Lastikten Elde Edilen Karbon Siyahının İyileştirilmiş Hummers Yöntemi ile Oksidasyonu

Grafen oksidin kimyasal sentezinde grafitin yüksek maliyeti nedeni ile kömür veya karbon siyahı gibi düşük maliyetli alternatif karbon kaynakları üzerindeki çalışmalar yoğunlaşmıştır. Bu çalışmada, İyileştirilmiş Hummers yöntemi ile grafit ve ömrünü tamamlamış atık lastikten piroliz ile karbon siyahının oksidasyonu gerçekleştirilmiştir. Grafen oksit (GO) ve okside karbon siyahının (CBO) ürün özellikleri- yapısal kusurluluğu, karbon içeriği, özgül ısı kapasitesi- belirlenmiş ve kıyaslanmıştır. Raman desenleri ile yapılan analiz ile ömrünü tamamlamış atık lastikten piroliz ile elde edilen karbon siyahının, nano boyutta ve yüksek saflıkta karbon siyahına (ID/IG=2,66) ve grafen okside (ID/IG=1,40) karşın daha kusurlu bir yapıya sahip olduğu belirlenmiştir (ID/IG=5,65). Buna karşın X-Ray Saçılım analizleri ile okside karbon siyahının grafen tabakalarında düzeninin grafen okside göre daha yüksek olduğu gözlemlenmiştir. Okside karbon siyahının atomik karbon içeriği 83,1% iken grafen oksidin atomik karbon içeriği 73,0% olarak belirlenmiştir. Bu sonuçlar okside karbon siyahının daha yüksek karbon içeriğine sahip olduğu görülmektedir. Çalışmadaki dikkat çekici sonuçlardan biri okside edilen karbon tabanlı malzemelerin özgül ısı değerleridir. Grafen oksidin, -40°C ve 50°C arasında ölçülen tüm özgül ısı kapasitesi değerleri okside karbon siyahından yüksek olarak bulunmuştur. İyileştirilmiş Hummers yönteminde grafit yerine karbon siyahının belli miktarlarda kullanılmasının ürün özelliklerinin grafen oksitten çok uzaklaşmaması için gerekli olduğu sonucuna varılmıştır. Ayrıca, okside karbon siyahının grafen oksit ile su arıtma ve elektronik uygulamalar gibi potansiyel endüstriyel uygulamalar bakımından kıyaslanması gerektiği sonucuna varılmıştır.  

Oxidation of the Graphite and Carbon Black Obtained from Worn Out Waste Tires Using Improved Hummers Method

Due to the high cost of graphite in the chemical synthesis of graphene oxide, studies on low-cost alternative carbon sources such as coal or carbon black have intensified. In this study; oxidation of graphite and carbon black obtained by pyrolysis from worn out waste tires, was oxidized using the Improved Hummers method. The product properties - structural defect, carbon content, specific heat capacity of graphene oxide (GO) and oxidized carbon black (CBO) was determined and compared each other. When the Raman patterns are analysed, it was determined that carbon black obtained by pyrolysis from worn out waste tires has a more defective structure (ID / IG = 5.65) than nano-sized and high-purity carbon black (ID / IG = 2.66) and graphene oxide (ID / IG = 1.40). However, X-Ray Diffraction analyses showed that oxidized carbon black had higher regular graphene layer content than graphene oxide. While the atomic carbon content of oxidized carbon black was found as 83.10%, the atomic carbon content of graphene oxide was determined as 73.10%. These results show that carbon black has higher carbon content even if oxidized. One of the remarkable results in the study is the specific heat values of oxidized carbon based materials. All specific heat capacity values ​​of graphene oxide measured between -40 ° C and 50 ° C were found to be higher than the oxidized carbon black. In the improved Hummers method, it was concluded that the use of certain amounts of carbon black instead of graphite is necessary for the product properties not to be too far away from graphene oxide. In addition, it was concluded that oxidized carbon black should be compared with graphene oxide in terms of potential industrial applications such as water treatment and electronic applications.

___

  • [1] García-Gen, S., Sousbie, P., Rangaraj, G., Lema, J. M., Rodríguez, J., Steyer, J.-P., and Torrijos, M. (2015) Kinetic modelling of anaerobic hydrolysis of solid wastes, including disintegration processes, Waste Management 35, 96-104.[2] Wilson, D. C., Rodic, L., Cowing, M. J., Velis, C. A., Whiteman, A. D., Scheinberg, A., Vilches, R., Masterson, D., Stretz, J., and Oelz, B. (2015) ‘Wasteaware’ benchmark indicators for integrated sustainable waste management in cities, Waste Management 35, 329-342.[3] MURATHAN, A., ASAN, A., and ABDULKAREM, T. A. (2013) ÇEVRESEL ATIKLARIN YAPI MALZEMESİNDE DEĞERLENDİRİLMESİ, Journal of the Faculty of Engineering & Architecture of Gazi University 28.[4] Thomas, B. S., Gupta, R. C., and Panicker, V. J. (2016) Recycling of waste tire rubber as aggregate in concrete: durability-related performance, Journal of Cleaner Production 112, 504-513.[5] Azevedo, F., Pacheco-Torgal, F., Jesus, C., Barroso de Aguiar, J. L., and Camões, A. F. (2012) Properties and durability of HPC with tyre rubber wastes, Construction and Building Materials 34, 186-191.[6] Eiras, J. N., Segovia, F., Borrachero, M. V., Monzó, J., Bonilla, M., and Payá, J. (2014) Physical and mechanical properties of foamed Portland cement composite containing crumb rubber from worn tires, Materials & Design 59, 550-557.[7] Wang, W.-C., Bai, C.-J., Lin, C.-T., and Prakash, S. (2016) Alternative fuel produced from thermal pyrolysis of waste tires and its use in a DI diesel engine, Applied Thermal Engineering 93, 330-338.[8] Thomas, B. S., Gupta, R. C., Mehra, P., and Kumar, S. (2015) Performance of high strength rubberized concrete in aggressive environment, Construction and Building Materials 83, 320-326.[9] Shu, X., and Huang, B. (2014) Recycling of waste tire rubber in asphalt and portland cement concrete: An overview, Construction and Building Materials 67, 217-224.[10] Abbaspour, M., Aflaki, E., and Moghadas Nejad, F. (2019) Reuse of waste tire textile fibers as soil reinforcement, Journal of Cleaner Production 207, 1059-1071.[11] Wang, M., Zhang, L., Li, A., Irfan, M., Du, Y., and Di, W. (2019) Comparative pyrolysis behaviors of tire tread and side wall from waste tire and characterization of the resulting chars, Journal of Environmental Management 232, 364-371.[12] Dai, M., Xu, H., Yu, Z., Fang, S., Chen, L., Gu, W., and Ma, X. (2018) Microwave-assisted fast co-pyrolysis behaviors and products between microalgae and polyvinyl chloride, Applied Thermal Engineering 136, 9-15.[13] Moulin, L., Da Silva, S., Bounaceur, A., Herblot, M., and Soudais, Y. (2017) Assessment of Recovered Carbon Black Obtained by Waste Tires Steam Water Thermolysis: An Industrial Application, Waste and Biomass Valorization 8, 2757-2770.[14] Saleh, T. A., and Gupta, V. K. (2014) Processing methods, characteristics and adsorption behavior of tire derived carbons: a review, Advances in colloid and interface science 211, 93-101.[15] Trubetskaya, A., Kling, J., Ershag, O., Attard, T. M., and Schröder, E. (2019) Removal of phenol and chlorine from wastewater using steam activated biomass soot and tire carbon black, Journal of Hazardous Materials 365, 846-856.[16] Sánchez‐Olmos, L., Medina‐Valtierra, J., Sathish‐Kumar, K., and Sánchez Cardenas, M. (2017) Sulfonated char from waste tire rubber used as strong acid catalyst for biodiesel production, Environmental Progress & Sustainable Energy 36, 619-626.[17] Feng, Z.-g., Rao, W.-y., Chen, C., Tian, B., Li, X.-j., Li, P.-l., and Guo, Q.-l. (2016) Performance evaluation of bitumen modified with pyrolysis carbon black made from waste tyres, Construction and Building Materials 111, 495-501.[18] Du, X., Zhang, Y., Pan, X., Meng, F., You, J., and Wang, Z. (2019) Preparation and properties of modified porous starch/carbon black/natural rubber composites, Composites Part B: Engineering 156, 1-7.[19] Wang, R., Li, W., Liu, L., Qian, Y., Liu, F., Chen, M., Guo, Y., and Liu, L. (2019) Carbon black/graphene-modified aluminum foil cathode current collectors for lithium ion batteries with enhanced electrochemical performances, Journal of Electroanalytical Chemistry 833, 63-69.[20] dos Santos Pereira, T., Mauruto de Oliveira, G. C., Santos, F. A., Raymundo-Pereira, P. A., Oliveira, O. N., and Janegitz, B. C. (2019) Use of zein microspheres to anchor carbon black and hemoglobin in electrochemical biosensors to detect hydrogen peroxide in cosmetic products, food and biological fluids, Talanta 194, 737-744.[21] Yuan, J. J., Hong, R. Y., Wang, Y. Q., and Feng, W. G. (2014) Low-temperature plasma preparation and application of carbon black nanoparticles, Chemical Engineering Journal 253, 107-120.[22] Zhu, L., Lu, Y., Wang, Y., Zhang, L., and Wang, W. (2012) Preparation and characterization of dopamine-decorated hydrophilic carbon black, Applied Surface Science 258, 5387-5393.[23] Razdyakonova, G. I., Kokhanovskaya, O. A., and Likholobov, V. A. (2015) Influence of Environmental Conditions on Carbon Black Oxidation by Reactive Oxygen Intermediates, Procedia Engineering 113, 43-50.[24] Amornwachirabodee, K., Tantimekin, N., Pan-In, P., Palaga, T., Pienpinijtham, P., Pipattanaboon, C., Sukmanee, T., Ritprajak, P., Charoenpat, P., and Pitaksajjakul, P. (2018) Oxidized Carbon Black: Preparation, Characterization and Application in Antibody Delivery across Cell Membrane, Scientific reports 8, 2489.[25] Alfè, M., Gargiulo, V., Di Capua, R., Chiarella, F., Rouzaud, J.-N., Vergara, A., and Ciajolo, A. (2012) Wet Chemical Method for Making Graphene-like Films from Carbon Black, ACS Applied Materials & Interfaces 4, 4491-4498.[26] Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., Grigorieva, I. V., and Firsov, A. A. (2004) Electric field in atomically thin carbon films, Science 306, 666-669.[27] Brycht, M., Leniart, A., Zavašnik, J., Nosal–Wiercińska, A., Wasiński, K., Półrolniczak, P., Skrzypek, S., and Kalcher, K. (2018) Synthesis and characterization of the thermally reduced graphene oxide in argon atmosphere, and its application to construct graphene paste electrode as a naptalam electrochemical sensor, Analytica Chimica Acta.[28] Abdolhosseinzadeh, S., Asgharzadeh, H., and Seop Kim, H. (2015) Fast and fully-scalable synthesis of reduced graphene oxide, Scientific Reports 5, 10160.[29] Chen, J., Yao, B., Li, C., and Shi, G. (2013) An improved Hummers method for eco-friendly synthesis of graphene oxide, Carbon 64, 225-229.[30] Marcano, D. C., Kosynkin, D. V., Berlin, J. M., Sinitskii, A., Sun, Z., Slesarev, A., Alemany, L. B., Lu, W., and Tour, J. M. (2010) Improved Synthesis of Graphene Oxide, ACS Nano 4, 4806-4814.[31] Korucu, H., Şimşek, B., and Yartaşı, A. (2018) A TOPSIS-Based Taguchi Design to Investigate Optimum Mixture Proportions of Graphene Oxide Powder Synthesized by Hummers Method, Arabian Journal for Science and Engineering 43, 6033-6055.[32] Hoang, V. C., Hassan, M., and Gomes, V. G. (2018) Coal derived carbon nanomaterials – Recent advances in synthesis and applications, Applied Materials Today 12, 342-358.[33] Fernández-García, L., Álvarez, P., Pérez-Mas, A. M., Blanco, C., Santamaría, R., Menéndez, R., and Granda, M. (2017) Peculiarities of the production of graphene oxides with controlled properties from industrial coal liquids, Fuel 203, 253-260.[34] Sierra, U., Álvarez, P., Blanco, C., Granda, M., Santamaría, R., and Menéndez, R. (2016) Cokes of different origin as precursors of graphene oxide, Fuel 166, 400-403.[35] Korucu, H., Şimşek, B., and Yartaşı, A. (2018) A TOPSIS-Based Taguchi Design to Investigate Optimum Mixture Proportions of Graphene Oxide Powder Synthesized by Hummers Method, Arabian Journal for Science and Engineering.[36] Şimşek, B., Ultav, G., Korucu, H., and Yartaşı, A. (2018) Improvement of the graphene oxide dispersion properties with the use of TOPSIS based Taguchi application, Periodica Polytechnica Chemical Engineering 62, 323-335.[37] Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., and Geim, A. K. (2006) Raman Spectrum of Graphene and Graphene Layers, Physical Review Letters 97, 187401.[38] Skákalová, V., Kotrusz, P., Jergel, M., Susi, T., Mittelberger, A., Vretenár, V., Šiffalovič, P., Kotakoski, J., Meyer, J. C., and Hulman, M. (2018) Chemical Oxidation of Graphite: Evolution of the Structure and Properties, The Journal of Physical Chemistry C 122, 929-935.[39] Guerrero-Contreras, J., and Caballero-Briones, F. (2015) Graphene oxide powders with different oxidation degree, prepared by synthesis variations of the Hummers method, Mater Chem Phys 153, 209-220.[40] Susanne, P., David, T. B., and Philippe, R. (2007) Determination of the specific heat capacity of a graphite sample using absolute and differential methods, Metrologia 44, 294.