R^3 de k- Vektör İçin R(x1,x2,…,xk)^S(3) Cisminin Üreteçleri

Öz n- bilinmeyenli reel kaysayılı tüm G- invaryant rasyonel fonksiyonların kümesi R(x1,x2,…,xk)G  ile gösterilir. Bu çalışmada üç boyutlu E3 Öklid uzayında benzerlik dönüşümleri grubu  G = S(3) olmak üzere, E3  de verilen k vektörden oluşan  A={ x1,x2,…,xk } kümesinin rasyonel S(3)-invaryantlarını tam olarak belirleyebilmek için G grubuna göre invaryant rasyonel fonksiyonlar cismi olan R(x1,x2,…,xk)G   cisminin üreteç kümesi ifade edilmiştir. Böylece A kümesinin herhangi bir S(3) invaryantı bu üreteç kümenin elemanlarının bir fonksiyonu olarak ifade edilebilecektir.

Kaynakça

Khadjiev Dj. (1967), Some Questions in the Theory of Vector Invariants, Math. USSR- Sbornic, 1 (3): 383-396.

Grosshans F. (1973), Obsevable Groups and Hilbert’s Problem, American Journal of Math., 95:229-253.

Klein F. (1893), A comperative review of recent researches in geometry ( Dr. M.W. Haskell, trans.) Bulletin of the New York Mathematical Society, 2 : 215-249.

Weyl H. (1946), The Classical Groups, Their Invariants and Representations, 2nd ed., with suppl., Princeton University Press, Princeton.

Khadjiev Dj. (1988), An Application of the Invariant Theory to the Differential Geometry of Curves, Fan, Tashkent ( in Russian ).

Incesu M. (2008), The Complete System of Point Invariants in the Similarity Geometry, Phd. Thesis, Karadeniz Technical University, Trabzon.

Sagiroglu Y. (2011), ”The Equivalence Problem For Parametric Curves In One-Dimensional Affine Space”, International Mathematical Forum, 6: 177-184.

Sagiroglu Y. (2015), ”Equi-affine differential invariants of a pair of curves”, TWMS Journal of Pure and Applied Mathematics, 6 : 238-245.

Sagiroglu Y., Peksen O. (2010), ”The Equivalence Of Centro-Equiaffine Curves”, Turkish ¨ Journal of Mathematics, 34: 95-104.

Oren İ. (2016), ”Complete System of Invariants of Subspaces of Lorentzian Space”, Iranian Journal of Science and Technology Transaction A-Science, 40(3): 1-8.

Khadjiev D., Oren İ., Peksen O. (2013) , ”Generating systems of differential invariants and the ¨ theorem on existence for curves in the pseudo-Euclidean geometry”, Turkish Journal of Mathematics, 37: 80-94.

Karataş M. (2005), Noktalar Sisteminin Öklid İnvaryantları, Y. Lisans Tezi, Karadeniz Teknik Üniversitesi, Trabzon.

Incesu M., Gürsoy O. (2016) , “On Similarity Invariant Rational Functions For k Vector Variables and Their Generators in R2”, Modelling and Application & Theory, 1 (1) , 37-53.

Incesu M., Gürsoy O. (2017), “LS(2)-Equivalence Conditions of Control Points and Application to Planar Bezier Curves” New Trends in Mathematical Science, 5 (3), 70-84.

Incesu M., Gürsoy O. (2017) “Düzlemsel Bezier Eğrilerinin S(2)- Denklik Şartları” Muş Alparslan University Journal of Science, 5 (2), 471 - 477.

İncesu M., (2017) , “THE SIMILARITY ORBITS IN R3” Modelling and Application & Theory, 2 (1), 28-37.

Nikulin V. And Shafarevich I.R. (1994),Geometries and Groups,Springer, NewYork.

Ören, İ.(2018) On the control invariants of planar Bezier curves for the groups M (2) and SM (2). Turkish Journal of Mathematics and Computer Science, 10, 74-81.

Kaynak Göster

Bibtex @araştırma makalesi { jeps629843, journal = {International Journal of Advances in Engineering and Pure Sciences}, issn = {}, eissn = {2636-8277}, address = {[email protected]}, publisher = {Marmara Üniversitesi}, year = {2020}, volume = {32}, pages = {239 - 250}, doi = {10.7240/jeps.629843}, title = {R\^3 de k- Vektör İçin R(x1,x2,…,xk)\^S(3) Cisminin Üreteçleri}, key = {cite}, author = {İncesu, Muhsin} }
APA İncesu, M . (2020). R^3 de k- Vektör İçin R(x1,x2,…,xk)^S(3) Cisminin Üreteçleri . International Journal of Advances in Engineering and Pure Sciences , 32 (3) , 239-250 . DOI: 10.7240/jeps.629843
MLA İncesu, M . "R^3 de k- Vektör İçin R(x1,x2,…,xk)^S(3) Cisminin Üreteçleri" . International Journal of Advances in Engineering and Pure Sciences 32 (2020 ): 239-250 <
Chicago İncesu, M . "R^3 de k- Vektör İçin R(x1,x2,…,xk)^S(3) Cisminin Üreteçleri". International Journal of Advances in Engineering and Pure Sciences 32 (2020 ): 239-250
RIS TY - JOUR T1 - R^3 de k- Vektör İçin R(x1,x2,…,xk)^S(3) Cisminin Üreteçleri AU - Muhsin İncesu Y1 - 2020 PY - 2020 N1 - doi: 10.7240/jeps.629843 DO - 10.7240/jeps.629843 T2 - International Journal of Advances in Engineering and Pure Sciences JF - Journal JO - JOR SP - 239 EP - 250 VL - 32 IS - 3 SN - -2636-8277 M3 - doi: 10.7240/jeps.629843 UR - Y2 - 2020 ER -
EndNote %0 International Journal of Advances in Engineering and Pure Sciences R^3 de k- Vektör İçin R(x1,x2,…,xk)^S(3) Cisminin Üreteçleri %A Muhsin İncesu %T R^3 de k- Vektör İçin R(x1,x2,…,xk)^S(3) Cisminin Üreteçleri %D 2020 %J International Journal of Advances in Engineering and Pure Sciences %P -2636-8277 %V 32 %N 3 %R doi: 10.7240/jeps.629843 %U 10.7240/jeps.629843
ISNAD İncesu, Muhsin . "R^3 de k- Vektör İçin R(x1,x2,…,xk)^S(3) Cisminin Üreteçleri". International Journal of Advances in Engineering and Pure Sciences 32 / 3 (Eylül 2020): 239-250 .
AMA İncesu M . R^3 de k- Vektör İçin R(x1,x2,…,xk)^S(3) Cisminin Üreteçleri. JEPS. 2020; 32(3): 239-250.
Vancouver İncesu M . R^3 de k- Vektör İçin R(x1,x2,…,xk)^S(3) Cisminin Üreteçleri. International Journal of Advances in Engineering and Pure Sciences. 2020; 32(3): 239-250.
IEEE M. İncesu , "R^3 de k- Vektör İçin R(x1,x2,…,xk)^S(3) Cisminin Üreteçleri", International Journal of Advances in Engineering and Pure Sciences, c. 32, sayı. 3, ss. 239-250, Eyl. 2020, doi:10.7240/jeps.629843