Karışık Modlu Yorulma Çatlak Büyümesi Olayının Yeni Bir Hesaplamalı Yöntem ile İncelenmesi

Üç boyutlu ve karışık modlu yorulma çatlak büyümesi problemleri kırılma mekaniği açısından her zaman ilgi çekici bir alan olmuştur. Hava-uzay ve otomotiv gibi endüstrilerdeki ürünlerin yorulmaya bağlı olarak kırılma sonucu meydana gelen hataları oldukça yaygındır. Bu ürünlerdeki herhangi bir hata veya başarısızlık, komponentlerine yüksek bir hasar veya insan sağlığı açısından yüksek risk olarak sonuçlanabilir. Bu tür hata veya arızaların analizi ile doğru sonucu bulmaya çalışmak belli bir zorluk ve karmaşıklık içerebilir. Problemlerdeki karışıklıklar hem yükleme çeşidiyle hem de belli bir geometri ile alakalı olarak ortaya çıkabilir. Bahsi geçen problemlerin deneysel yöntemler kullanarak analizi zor ve maliyetli olabilir. Bu sebeple, başlangıçta sürecin teorik yönlerini kurmak ve sonrasında çözüm için hesaplamalı bir yöntem oluşturmak eldeki problemin çözümü açısından önemlidir. Çalışmada kullanılan çatlak büyüme kanunu NASGRO modelidir ve ilerleme açısının belirlenmesi de maksimum çevresel gerilme kriteriyle gerçekleştirilmektedir. İlerleme aşamalarının ön-işlem sürecinde ve alt modelleme tekniğinin faydalanılmasında Hypermesh ve ANSYS APDL programları kullanılmaktadır. Problemin çözüm kısmı ise FRAC3D programı ve bünyesindeki zenginleştirilmiş elemanlar ile yeni geliştirilmiş çatlak büyüme araçlarıyla yapılmaktadır. Örnekleme amacıyla uçak motorundaki kompresörün kanat kısmındaki çatlakların incelenmesine yer verilecektir.

Investigation of Mixed-Mode Fatigue Crack Growth Phenomenon with a New Computational Procedure

Analysis of 3-D fatigue crack growth problems with mixed-mode loading has always been an interesting area in the field of fracture mechanics. Fracture failure under the influence of fatigue loading has been a common experience for various industries’ products, such as aerospace and automotive components. Any possible failure in these structures can result in high damage to these components or a serious risk for people’s health. The analysis of such failures may involve great challenges and complexities for obtaining the accurate solution. The complexities of the problem may not only be related to the loading type, but also to the specific geometry itself. Such problems are hard and costly to analyze with experimental methods. Therefore, it is important to establish the theoretical aspects of the process initially, and then having a computational procedure to solve the problem at hand. The crack growth law used in this procedure is NASGRO-type, and determination of the propagation angle is based on the maximum hoop stress criterion. Hypermesh and ANSYS APDL software are benefited during preprocessing of the propagation steps and application of submodeling procedure. Solution of the problem is performed with FRAC3D program, its enriched element methodology and newly implemented tools for crack growth. A specific example that includes cracking within an aircraft engine compressor blade is shown for demonstration purpose.          

___

  • [1] Dhont, G. (1998). Automatic 3-D mode I crack propagation calculations with finite elements, Int. Jour. of Num. Met. in Eng., 41, 739-757.
  • [2] Carter, B.J., Wawrzynek P.A., Ingraffea, A.R. (2000). Automated 3-D crack growth simulation, Int. Jour. of Num. Met. in Eng., 47, 229-253.
  • [3] Hou, J., Goldstraw, M., Maan, S., Knop, M. (2001). An evaluation of 3-D crack growth using ZENCRACK, DSTO-TR-1158, Defense Science and Technology Organization.
  • [4] Schollmann, M., Fan, M., Richard, H.A. (2003). Development of a new software for adaptive crack growth simulations in 3-D structures, Eng. Frac. Mech., 70, 249-268.
  • [5] Sukumar, N., Chopp, D.L., Bechet, E., Moes, N. (2008). Three-dimensional non-planar crack growth by a coupled extended finite element and fast marching method, Int. Jour. of Num. Met. in Eng., 76, 727-748.
  • [6] Dundar, H., Ayhan, A.O. (2016). Non-planar crack growth analyses of multiple cracks in thin-walled structures, Int. Jour. of Fatigue, 92, 596-604.
  • [7] Sih, G.C. (1990). Mechanics of fracture initiation and propagation, Kluwer Academic Publishers.
  • [8] Paris, P., Erdogan, F. (1963). A critical analysis of crack propagation laws, Jour. of Basic Eng., 85, 528-533.
  • [9] Nasgro Fracture Mechanics and Fatigue Crack Growth Analysis Software Reference Manual (2016). Version 8.1, NASA Johnson Space Center and Southwest Research Institute, Texas, ABD.
  • [10] Erdogan, F., Sih, G.C. (1963). On the crack extension in plates under plane loading and transverse shear, Jour. of Basic Eng, 85, 519-525.
  • [11] Ayhan, A.O., Nied, H.F. (2002). Stress Intensity Factors for Three-dimensional Surface Cracks Using Enriched Finite Elements, Int. Jour. for Num. Met. in Eng., 54, 899-921.
  • [12] Saribay, M., Nied, H.F. (2014). Dynamic stress intensity factors for suddenly loaded structures using enriched finite elements, Theor. Appl. Fract. Mech., 70, 59-67.
  • [13] Ayhan, A.O. (2011). Simulation of three-dimensi onal fatigue crack propagation using enriched finite elements, Computers and Structures, 89, 801-812.
  • [14] Altair Hyperworks, Version 11.0, Copyright 1986-2019 Altair Engineering
  • [15] ANSYS Mechanical APDL, Version 15.0.7, Copyright 2014 SAS IP, Inc.
  • [16] https://ffden-2.phys.uaf.edu/webproj/212_spring_2015 /Timothy_Sherry/Tim_Sherry/Compressor.htm
  • [17] https://grabcad.com/library/compressor-blade-jet-engine-1