Kitosanın Özellikleri, Uygulama Alanları, Bitki Sistemlerine Etkileri

Tarımda ürün eldesi sırasında meydana gelen ekonomik kayıpları azaltmak için uzun yıllardır kullanılan kimyasal yöntemler, insan sağlığı ve ekolojik dengeyi olumsuz etkilemektedir. Bu nedenle son yıllarda çevreye zararsız iyileştirme yöntemleri ile ilgili araştırmalar artmıştır. Kimyasal ürünlere alternatif olarak tercih edilen doğal iyileştiricilerden birisi de kitosandır. Kitosan, çoğunlukla yengeç, ıstakoz, karides gibi kabuklu su canlılarının iskeletinde yaygın olarak bulunan kitinden deasetilasyon yöntemiyle elde edilmektedir. Kitosan antiviral, antibakteriyel ve antifungal özelliğe sahip olmasının yanında, bitkilerin savunma sistemini de teşvik ederek hastalıkların kontrolü ve yayılmalarının azaltılmasında da etkili bir ajandır. Bunun yanında bulunduğu ortamda (su, toprak vb.) metal iyonlarını şelatlaması ve bitkilerin toksik etkili metallerin alınımını engellemesi nedeniyle tarım alanında iyileştirmede de kullanılmaya başlanmıştır. Yapılan çok sayıdaki çalışmaya rağmen kitosanın bitkilerdeki etki mekanizması tam olarak aydınlatılamamıştır. Kitosanla ilgili detaylı çalışmaların artması, tarımsal alanlarda kitosan kullanımı ile ürünlerden yüksek verim alınabilmesi için yardımcı olacaktır.

Properties of Chitosan, Application Areas, Effects on Plant Systems

Chemical methods that have been used for many years to reduce the economic losses during agricultural production have an adverse effect on human health and ecological balance. Therefore, in recent years, researches about harmless environmental improvement methods have increased. One of the preferred natural conditioners as an alternative to chemical products is chitosan. Chitosan is obtained from the chitin deacetylation method, which is commonly found in the skeleton of shellfish such as crab, lobster, shrimp. Besides having antiviral, antibacterial and antifungal properties, chitosan is an effective agent in controlling and reducing the spread of diseases by promoting the defense system of plants. In addition to this, it has been started to be used in the agricultural field as it chelates metal ions in its environment (water, soil, etc.) and prevents the ingestion of toxic effective metals by the plants. Despite many studies, the mechanism of action of chitosan in plants has not been fully elucidated. The increase in detailed studies on chitosan will help to obtain high yields of products with the use of chitosan in agricultural fields.

___

  • Kumar, M. N. R. (2000). A review of chitin and chitosan applications. Reactive and functional polymers, 46(1), 1-27.
  • Dutta, P. K., Ravikumar, M. N. V., & Dutta, J. (2002). Chitin and chitosan for versatile applications. Journal of Macromolecular Science, Part C: Polymer Reviews, 42(3), 307-354.
  • Demir, A., & Seventekin, N. (2009). Kitin, kitosan ve genel kullanım alanları. Tekstil Teknolojileri Elektronik Dergisi, 3(2), 92-103.
  • Vasconcelos, M. W. (2014). Chitosan and chitooligosaccharide utilization in phytoremediation and biofortification programs: current knowledge and future perspectives. Frontiers in plant science, 5
  • Malerba, M., & Cerana, R. (2016). Chitosan effects on plant systems. International journal of molecular sciences, 17(7), 996.
  • El Hadrami, A., Adam, L. R., El Hadrami, I., & Daayf, F. (2010). Chitosan in plant protection. Marine drugs, 8(4), 968-987.
  • Park, B. K., & Kim, M. M. (2010). Applications of chitin and its derivatives in biological medicine. International journal of molecular sciences, 11(12), 5152-5164.
  • Koç, B. E., & Özkan, M. (2011). Gıda endüstrisinde kitosanın kullanımı. Gıda Dergisi, 36(3).
  • No, H. K., Park, N. Y., Lee, S. H., & Meyers, S. P. (2002). Antibacterial activity of chitosans and chitosan oligomers with different molecular weights. International journal of food microbiology, 74(1-2), 65-72.
  • Szymańska, E., & Winnicka, K. (2015). Stability of chitosan—a challenge for pharmaceutical and biomedical applications. Marine drugs, 13(4), 1819-1846.
  • Yi, H., Wu, L. Q., Bentley, W. E., Ghodssi, R., Rubloff, G. W., Culver, J. N., & Payne, G. F. (2005). Biofabrication with chitosan. Biomacromolecules, 6(6), 2881-2894.
  • Akbulut, Y., & Bulut, M. O. (2015). Tekstilde Kullanılan Bazı Biyopolimerlerin Tarıma Uygulanabilirliği. SDÜ Yekarum e-Dergi, 3(1).
  • Liu, H., Tian, W., Li, B., Wu, G., Ibrahim, M., Tao, Z., ... & Sun, G. (2012). Antifungal effect and mechanism of chitosan against the rice sheath blight pathogen, Rhizoctonia solani. Biotechnology letters, 34(12), 2291-2298.
  • Liu, D., Li, Z., Zhu, Y., Li, Z., & Kumar, R. (2014). Recycled chitosan nanofibril as an effective Cu (II), Pb (II) and Cd (II) ionic chelating agent: adsorption and desorption performance. Carbohydrate polymers, 111, 469-476.
  • Abu-Muriefah SS (2013) Effect of chitosan on common bean (Phaseolus vulgaris L.) plants grown under water stress conditions. Int Res J Agri Sci Soil Sci 3: 192- 199.
  • Zong H, Liu S, Xing R, Chen X, Li P (2017) Protective effect of chitosan on photosynthesis and antioxidative defense system in edible rape (Brassica rapa L.) in the presence of cadmium. Ecotox. Environ Safe 138: 271-278.
  • Kurtuluş, G. (2019) Buğday (Triticum aestivum L.)’da Alüminyum Toksisitesine Karşı Kitosan Uygulamasının Etkileri. (Yayımlanmamış Yüksek Lisans Tezi). Marmara Üniversitesi/Fen Bilimleri Enstitüsü, İstanbul
  • Benavides-Mendoza, A., Alonso-Velasco, R., Romero-García, J., Ledesma-Pérez, A. S., & Raygoza-Castro, J. M. (2001). LA APLICACION FOLIAR DE QUITOSAN EN ACIDO ACETICO AUMENTA LA BIOMASA DE LA LECHUGA. XXX VBBBO NY5, 190.
  • Tsugita, T. (1993). The application of chitin/chitosan for agriculture. In Proc. of the Special Sess. 7th Symposium on Chitin and Chitosan, 1993 (pp. 21-22). Jap. Soc. for Chitin and Chitosan.
  • Utsunomiya, N., Kinai, H., Matsui, Y., & Takebayashi, T. (1998). The effects of chitosan oligosaccharides soil conditioner and nitrogen fertilizer on the flowering and fruit growth of purple passionfruit (Passiflora edulis Sims var. edulis). Journal of the Japanese Society for Horticultural Science, 67(4), 567-571.
  • Ohta, K., Taniguchi, A., Konishi, N., & Hosoki, T. (1999). Chitosan treatment affects plant growth and flower quality in Eustoma grandiflorum. HortScience, 34(2), 233-234.
  • Chatelain, P. G., Pintado, M. E., and Vasconcelos, M. W. (2014). Evaluation of chitooligosaccharide application on mineral accumulation and plant growth in Phaseolus vulgaris. Plant Sci. 215–216, 134–140. doi: 10.1016/j.plantsci.2013.11.009
  • Tsaih, M. L., & Chen, R. H. (2003). The effect of reaction time and temperature during heterogenous alkali deacetylation on degree of deacetylation and molecular weight of resulting chitosan. Journal of applied polymer science, 88(13), 2917-2923.
  • Dash, M., Chiellini, F., Ottenbrite, R. M., & Chiellini, E. (2011). Chitosan—A versatile semi-synthetic polymer in biomedical applications. Progress in polymer science, 36(8), 981-1014.
  • Majekodunmi, S. O. (2016). Current development of extraction, characterization and evaluation of properties of chitosan and its use in medicine and pharmaceutical industry. American Journal of Polymer Science, 6(3), 86-91.
  • Muzzarelli C, Muzzarelli RAA (2003) Chitin related food science today (and two centurites ago). Agroofood Ind. Hi-Tech 1: 39-42
  • Muzzarelli RAA (1986) Filmogenic properties of chitin /chitosan. In: Muzzarelli RAR, Jeuniaux, Gooday CW (eds) Chitin in nature and Technology. Pp. 389-396. Plenum Press, NewYork.
  • Struszczyk H, Orlikowski BL, Skrzypczak C. (2001) Chitosan in the control of soil-borne pathogens. Chitin Enzymology; 197–205.
  • El Ghaouth, A., Arul, J., Asselin, A., & Benhamou, N. (1992). Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer. Mycological research, 96(9), 769-779.
  • Falcon-Rodriguez AB, Costales D, Cabrera JC, Martinez-Tellez MA (2011) Chitosan physico-chemical properties modulate and resistance in tobacco plants against the oomycete Phytophthora nicotianae. Pestic. Biochem. Phys. 100: 221-228.
  • Feliziani E, Smilanick JL, Morgosan DA, Mansour MF, , Gu S, Gohil HL, Ames ZR (2013) Preharvest fungucide potassium sorbat or chitosan use on quality and storage decay of table grapes. Plant Dis. 97: 307-314.
  • Romanazzi, G., Gabler, F. M., & Smilanick, J. L. (2006). Preharvest chitosan and postharvest UV irradiation treatments suppress gray mold of table grapes. Plant Disease, 90(4), 445-450.
  • Feliziani E, Santini M, Landi L, Romanazzi G (2013) Pre- and Post-harvest treatment with alternatives to synthetic fungucides to control postharvest decay of sweet cherry. Post harvest Biol Tec. 78: 133-138.
  • Doares SH, Syrovets T, Elmar EW, Weiler W, Ryan CA (1995) Oligogalactronase and chitosan activate plant defensive genes through the octadecanoid pathway. Proc. Nat. Acad. Sci. USA 92: 4095-4098.
  • Aziz A, Trotel-Aziz P, Dhuicq L, Jeandet P, Couderchet M, Vernet G (2006) Chitosan oligomers and copper sulfate induce grapevine defense reactions and resistance to gray mold and downy mildew. Phytopathology 96: 1188-1194.
  • Kenra DF, Hadwiger LA (1984) Characterization of the smallest chitosan oligomer that is maximally antifungal to Fusarium solani and elicits pisatin formation in Pisum sativum. Exp. Mycol. 8: 276-281.
  • Sathiyabana M, Balasubramanian R (1998) Chitosan induces resistance components in Arachis hypogaea against leaf rust caused by Puccinia arachidis. Speg. Crop Prot. 17: 307-313.
  • Kulikov, S. N., Chirkov, S. N., Il’ina, A. V., Lopatin, S. A., & Varlamov, V. P. (2006). Effect of the molecular weight of chitosan on its antiviral activity in plants. Applied Biochemistry and Microbiology, 42(2), 200-203.
  • Vasyukova, N. I., Chalenko, G. I., Gerasimova, N. G., Perekhod, E. A., Ozeretskovskaya, O. L., Il’ina, A. V., ... & Albulov, A. I. (2000). Chitin and chitosan derivatives as elicitors of potato resistance to late blight. Applied Biochemistry and Microbiology, 36(4), 372-376.
  • Ren, H., Endo, H., & Hayashi, T. (2001). Antioxidative and antimutagenic activities and polyphenol content of pesticide‐free and organically cultivated green vegetables using water‐soluble chitosan as a soil modifier and leaf surface spray. Journal of the Science of Food and Agriculture, 81(15), 1426-1432.
  • Barber, M. S., Bertram, R. E., & Ride, J. P. (1989). Chitin oligosaccharides elicit lignification in wounded wheat leaves. Physiological and Molecular Plant Pathology, 34(1), 3-12.
  • Tikhonov, V. E., Stepnova, E. A., Babak, V. G., Yamskov, I. A., Palma-Guerrero, J., Jansson, H. B., et al. (2006). Bactericidal and antifungal activities of a low molecular weight chitosan and its N-/2(3)-(dodec-2-enyl)succinoyl/- derivatives. Carbohydr. Polym. 64, 66–72. doi: 10.1016/j.carbpol.2005.10.021
  • Rabea, E. I. ve Steurbaut, W. (2010). Chemically modified chitosans as antimicrobial agents against some plant pathogenic bacteria and fungi. Plant Protect. Sci. 46, 149–158.
  • Trotel-Aziz, P., Couderchet, M., Vernet, G., and Aziz, A. (2006). Chitosan stimulates defense reactions in grapevine leaves and inhibits development of Botrytis cinerea. Eur. J. Plant Pathol. 114, 405–413. doi: 10.1007/s10658-006-0005-5.
  • Khalil, M. S., and Badawy, M. E. (2012). Nematicidal activity of a biopolymer chitosan at different molecular weights against root-knot nematode, Meloidogyne incognita. Plant Protect Sci. 48, 170–178.
  • Nunes da Silva, M., Cardoso, A. R., Ferreira, D., Brito, M., Pintado, M. E., and Vasconcelos, M. W. (2014). Chitosan as a biocontrol agent against the pinewood nematode (Bursaphelenchus xylophilus). Plant Pathol. 62, 1398–1406. doi: 10.1111/ppa.12037.
  • Allan, C. R., & Hadwiger, L. A. (1979). The fungicidal effect of chitosan on fungi of varying cell wall composition. Experimental mycology, 3(3), 285-287.
  • Faoro, F., Sant, S., Iriti, M., Maffi, D., & Appiano, A. (2001). Chitosan-elicited resistance to plant viruses: a histochemical and cytochemical study. Chitin Enzymology, 22, 57-62.
  • Chirkov, S. N. (2002). The antiviral activity of chitosan. Applied Biochemistry and Microbiology, 38(1), 1-8.
  • Pospieszny, H., Chirkov, S., & Atabekov, J. (1991). Induction of antiviral resistance in plants by chitosan. Plant Science, 79(1), 63-68.
  • Kong, M., Chen, X. G., Xing, K., & Park, H. J. (2010). Antimicrobial properties of chitosan and mode of action: a state of the art review. International journal of food microbiology, 144(1), 51-63.
  • Muzzarelli, R., Tarsi, R., Filippini, O., Giovanetti, E., Biagini, G., & Varaldo, P. E. (1990). Antimicrobial properties of N-carboxybutyl chitosan. Antimicrobial agents and chemotherapy, 34(10), 2019-2023.
  • Chung, Y. C., Wang, H. L., Chen, Y. M., & Li, S. L. (2003). Effect of abiotic factors on the antibacterial activity of chitosan against waterborne pathogens. Bioresource technology, 88(3), 179-184.
  • Jia, Z., & Xu, W. (2001). Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydrate research, 333(1), 1-6.
  • Kim, J. H., Shin, J. H., Lee, H. J., Chung, I. S., & Lee, H. J. (1997). Effect of chitosan on indirubin production from suspension culture of Polygonum tinctorium. Journal of fermentation and bioengineering, 83(2), 206-208.
  • Roller, S., & Covill, N. (1999). The antifungal properties of chitosan in laboratory media and apple juice. International Journal of Food Microbiology, 47(1), 67-77.
  • Hernandez-Lauzardo, A. N., Bautista-Baños, S., Velazquez-Del Valle, M. G., Méndez-Montealvo, M. G., Sánchez-Rivera, M. M., & Bello-Perez, L. A. (2008). Antifungal effects of chitosan with different molecular weights on in vitro development of Rhizopus stolonifer (Ehrenb.: Fr.) Vuill. Carbohydrate Polymers, 73(4), 541-547.
  • Meng, X., Yang, L., Kennedy, J. F., & Tian, S. (2010). Effects of chitosan and oligochitosan on growth of two fungal pathogens and physiological properties in pear fruit. Carbohydrate Polymers, 81(1), 70-75.
  • Olicón-Hernández, D. R., Hernández-Lauzardo, A. N., Pardo, J. P., Peña, A., Velázquez-del Valle, M. G., & Guerra-Sánchez, G. (2015). Influence of chitosan and its derivatives on cell development and physiology of Ustilago maydis. International journal of biological macromolecules, 79, 654-660.
  • Terrile, M. C., Mansilla, A. Y., Albertengo, L., Rodríguez, M. S., & Casalongué, C. A. (2015). Nitric‐oxide‐mediated cell death is triggered by chitosan in Fusarium eumartii spores. Pest management science, 71(5), 668-674.
  • Khan, A. A. (1992). Preplant physiological seed conditioning. Horticultural reviews, 13(1), 131-181.
  • Bhaskara Reddy, M. V., Arul, J., Angers, P., & Couture, L. (1999). Chitosan treatment of wheat seeds induces resistance to Fusarium graminearum and improves seed quality. Journal of Agricultural and Food chemistry, 47(3), 1208-1216.
  • Zhou, Y. G., Yang, Y. D., Qi, Y. G., Zhang, Z. M., Wang, X. J., & Hu, X. J. (2002). Effects of chitosan on some physiological activity in germinating seed of peanut. Journal of Peanut Science, 31(1), 22-25.
  • Ruan, S., & Xue, Q. (2002). Effects of chitosan coating on seed germination and salt-tolerance of seedling in hybrid rice (Oryza sativa L.). Zuo wu xue bao, 28(6), 803-808.
  • Cheah L. H., & Page, B. B. C. (1997, August). Trichoderma spp. for potential biocontrol of clubroot of vegetable brassicas. In Proceedings of the New Zealand Plant Protection Conference (pp. 150-153). NEW ZEALAND PLANT PROTECTION SOCIETY INC.
  • Guan, Y. J., Hu, J., Wang, X. J., & Shao, C. X. (2009). Seed priming with chitosan improves maize germination and seedling growth in relation to physiological changes under low temperature stress. Journal of Zhejiang University-Science B, 10(6), 427-433.
  • Faoro, F., Maffi, D., Cantu, D., & Iriti, M. (2008). Chemical-induced resistance against powdery mildew in barley: the effects of chitosan and benzothiadiazole. Biocontrol, 53(2), 387-401.
  • Iriti, M., Picchi, V., Rossoni, M., Gomarasca, S., Ludwig, N., Gargano, M., & Faoro, F. (2009). Chitosan antitranspirant activity is due to abscisic acid-dependent stomatal closure. Environmental and Experimental Botany, 66(3), 493-500.
  • Rabea, E. I., Badawy, M. E. T., Stevens, C. V., Smagghe, G., & Steurbaut, W. (2003). Chitosan as antimicrobial agent: applications and mode of action. Biomacromolecules, 4(6), 1457-1465.
  • Murphy, J. G., Rafferty, S. M., & Cassells, A. C. (2000). Stimulation of wild strawberry (Fragaria vesca) arbuscular mycorrhizas by addition of shellfish waste to the growth substrate: interaction between mycorrhization, substrate amendment and susceptibility to red core (Phytophthora fragariae). Applied Soil Ecology, 15(2), 153-158.
  • Chookhongkha, N., Miyagawa, S., Jirakiattikul, Y., & Photchanachai, S. (2012, November). Chili growth and seed productivity as affected by chitosan. In Proceedings of the International Conference on Agriculture Technology and Food Sciences (ICATFS’2012), Manila, Philippines (pp. 17-18).
  • Kuchitsu, K., Yazaki, Y., Sakano, K., & Shibuya, N. (1997). Transient cytoplasmic pH change and ion fluxes through the plasma memberan in suspension-cultured rice cells triggered by N-acetylchitooligosaccharide elicitor. Plant and cell physiology, 38(9), 1012-1018.
  • Kuchitsu, K., Kosaka, H., Shiga, T., & Shibuya, N. (1995). EPR evidence for generation of hydroxyl radical triggered byN-acetylchitooligosaccharide elicitor and a protein phosphatase inhibitor in suspension-cultured rice cells. Protoplasma, 188(1-2), 138-142.
  • Nojiri, H., Sugimori, M., Yamane, H., Nishimura, Y., Yamada, A., Shibuya, N., ... & Omori, T. (1996). Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiology, 110(2), 387-392.
  • Takai, R., Hasegawa, K., Kaku, H., Shibuya, N., & Minami, E. (2001). Isolation and analysis of expression mechanisms of a rice gene, EL5, which shows structural similarity to ATL family from Arabidopsis, in response to N-acetylchitooligosaccharide elicitor. Plant Science, 160(4), 577-583.
  • Bornet, A., & Teissedre, P. L. (2008). Chitosan, chitin-glucan and chitin effects on minerals (iron, lead, cadmium) and organic (ochratoxin A) contaminants in wines. European Food Research and Technology, 226(4), 681-689.
  • N. Ben-Shalom, in R. Brzezinski, I. Boucher, A. Retnakaran (Eds.), Chitosan–metal complex as a natural agricultural product against plant diseases, in: Proceedings of the 9th International Chitin–Chitosan Conference, Montréal, Canada, August 27–30, 2003.
  • Varma, A. J., Deshpande, S. V., & Kennedy, J. F. (2004). Metal complexation by chitosan and its derivatives: a review. Carbohydrate Polymers, 55(1), 77-93.
  • Muzzarelli, R. (1992). Depolymerization of methyl pyrrolidinone chitosan by lysozyme. Carbohydrate polymers, 19(1), 29-34.
  • Vasconcelos, M., Datta, K., Oliva, N., Khalekuzzaman, M., Torrizo, L., Krishnan, S., et al. (2003). Enhanced iron and zinc accumulation in transgenic rice with the ferritin gene. Plant Sci. 164, 371–378. doi: 10.1016/S0168-9452(02)00421-1
  • Chung, Y. C., Kuo, C. L., & Chen, C. C. (2005). Preparation and important functional properties of water-soluble chitosan produced through Maillard reaction. Bioresource Technology, 96(13), 1473-1482.
  • Bostan, K., Aldemir, T., & Aydın, A. (2007). Kitosan ve antimikrobiyal aktivitesi. Türk Mikrobiyal Cem Dergisi, 37(2), 118-127.
  • Kurt, Ş., & Zorba, Ö. (2005). Kitin (Chitin), Kitosan (Chitosan) ve Türevlerinin Gıdalarda Kullanım Olanakları. GIDA/THE JOURNAL OF FOOD, 30(6).
  • Hadwiger, L. A., Kendra, D. F., Fristensky, B. W., & Wagoner, W. (1986). Chitosan both activates genes in plants and inhibits RNA synthesis in fungi. In Chitin in nature and technology (pp. 209-214). Springer, Boston, MA.
  • Limpanavech, P., Chaiyasuta, S., Vongpromek, R., Pichyangkura, R., Khunwasi, C., Chadchawan, S., ... & Bangyeekhun, T. (2008). Chitosan effects on floral production, gene expression, and anatomical changes in the Dendrobium orchid. Scientia Horticulturae, 116(1), 65-72.
  • Hadwiger, L. A. (2013). Multiple effects of chitosan on plant systems: solid science or hype. Plant science, 208, 42-49.
  • Cho, M. H., No, H. K., & Prinyawiwatkul, W. (2008). Chitosan treatments affect growth and selected quality of sunflower sprouts. Journal of food science, 73(1), S70-S77.
  • Singh, S. (2016). Enhancing phytochemical levels, enzymatic and antioxidant activity of spinach leaves by chitosan treatment and an insight into the metabolic pathway using DART-MS technique. Food chemistry, 199, 176-184.
  • Levine, A., Tenhaken, R., Dixon, R., & Lamb, C. (1994). H2O2 from the oxidative burst orchestrates the plant hypersensitive disease resistance response. Cell, 79(4), 583-593.
  • Loake, G., & Grant, M. (2007). Salicylic acid in plant defence—the players and protagonists. Current opinion in plant biology, 10(5), 466-472.
  • Janda, M., & Ruelland, E. (2015). Magical mystery tour: salicylic acid signalling. Environmental and Experimental Botany, 114, 117-128.
  • Koornneef, A., & Pieterse, C. M. (2008). Cross talk in defense signaling. Plant physiology, 146(3), 839-844.
  • Zhang, S., Li, X., Sun, Z., Shao, S., Hu, L., Ye, M., ... & Shi, K. (2015). Antagonism between phytohormone signalling underlies the variation in disease susceptibility of tomato plants under elevated CO2. Journal of Experimental Botany, 66(7), 1951-1963.
  • Rakwal, R., Tamogami, S., Agrawal, G. K., & Iwahashi, H. (2002). Octadecanoid signaling component “burst” in rice (Oryza sativa L.) seedling leaves upon wounding by cut and treatment with fungal elicitor chitosan. Biochemical and Biophysical Research Communications, 295(5), 1041-1045.
  • Yin, H., Li, Y., Zhang, H. Y., Wang, W. X., Lu, H., Grevsen, K., ... & Du, Y. (2013). Chitosan oligosaccharides–triggered innate immunity contributes to oilseed rape resistance against Sclerotinia Sclerotiorum. International Journal of Plant Sciences, 174(4), 722-732.
  • Jia, X., Meng, Q., Zeng, H., Wang, W., & Yin, H. (2016). Chitosan oligosaccharide induces resistance to Tobacco mosaic virus in Arabidopsis via the salicylic acid-mediated signalling pathway. Scientific reports, 6, 26144.
  • Zhang, H., Zhao, X., Yang, J., Yin, H., Wang, W., Lu, H., & Du, Y. (2011). Nitric oxide production and its functional link with OIPK in tobacco defense response elicited by chitooligosaccharide. Plant cell reports, 30(6), 1153-1162.
  • Malerba, M., Crosti, P., & Cerana, R. (2012). Defense/stress responses activated by chitosan in sycamore cultured cells. Protoplasma, 249(1), 89-98.
  • Iriti, M., & Varoni, E. M. (2015). Chitosan-induced antiviral activity and innate immunity in plants. Environmental Science and Pollution Research, 22(4), 2935-2944.
  • Ghasemnezhad, M., & Shiri, M. A. (2010). Effect of chitosan coatings on some quality indices of apricot (Prunus armeniaca L.) during cold storage. Caspian Journal of Environmental Sciences, 8(1), 25-33.
  • Ali, A., Muhammad, M. T. M., Sijam, K., & Siddiqui, Y. (2011). Effect of chitosan coatings on the physicochemical characteristics of Eksotika II papaya (Carica papaya L.) fruit during cold storage. Food chemistry, 124(2), 620-626.
  • FAO Statistical Yearbook 2013. Available online: http://www.fao.org/docrep/018/i3107e/i3107e00.htm) (accessed on 16 September 2014).