Laurus Nobilis, Oregano ve Cinnamomum Zeylanicum Uçucu Yağları İlaveli Antibakteriyel Selülozik Membranların Üretilmesi

Bu çalışmada, Laurus nobilis, Oregano ve Cinnamomum zeylanicum bitkilerinden hidrodistilasyon yoluyla elde edilen uçucu yağlar kullanılarakGluconacetobacter hansenii P2A (KUEN 1606) tarafından sentezlenen bakteriyel selüloz (BC) membranlara antimikrobiyel özellikkazandırılması hedeflenmiştir. Uçucu yağların analizi gaz kromatografisi kütle spektrometresi (GC-MS) kullanılarak gerçekleştirilmiştir.Analiz sonucunda L. nobilis, Oregano ve C. zeylanicum uçucu yağlarının temel bileşenleri sırasıyla, 1,8-cineole (%63.7), carvacrol(%64,5) ve cinnamaldehyde (%80,9) olarak belirlenmiştir. BC membranlar, %1-12 (v/v) uçucu yağ içeren çözeltiler ile temas ettirilmişve daha sonra disk difüzyon tekniği ile Staphylococcus aureus (ATCC 25923, Gram pozitif) ve Pseudomonas aeruginosa (ATCC 27853,Gram negatif) bakterilerine karşı etkinlikleri araştırılmıştır. Sonuçlar, L. nobilis uçucu yağı yüklenmiş BC membranların S. aureus’a karşıetkin olmadığını, P. aeruginosa’ya karşı ise ancak %8’in üzerindeki derişimlerde zayıf etki göstererek yarıçapı 2 mm’ye varan inhibisyonbölgeleri oluşturabildiğini göstermiştir. Öte yandan, Oregano ve C. zeylanicum uçucu yağları ile yüklenmiş biyofilmler yarıçapı sırasıyla13 mm ve 16 mm’ye varan inhibisyon bölgeleri oluşturarak her iki patojene karşı da yüksek etkinlik göstermişlerdir.

Fabrication of Laurus Nobilis, Oregano and Cinnamomum Zeylanicum Essential Oils Supplemented Antibacterial Cellulosic Membranes

In this study, it was aimed to gain antimicrobial property in to bacterial cellulose (BC) membranes synthesized by Gluconacetobacter hansenii P2A (KUEN 1606) using essential oils derived from Laurus nobilis, Oregano and Cinnamomum zeylanicum plants via hydrodistillation. The analysis of essential oils was realized by Gas Chromatography and Mass Spectroscopy (GC-MS). Accordingly, major constituents of essential oils were identified as 1,8-cineole (63,7%), carvacrol (64,5%) and cinnamaldehyde (80,9%) for L. nobilis, Oregano and C. zeylanicum, respectively. BC membranes were contacted with solutions of 1-12% (v/v) oil content and then tested for antibacterial activity against Staphylococcus auerus (ATCC 25923, Gram positive) and Pseudomonas aeruginosa (ATCC 27853, Gram negative) by disc diffusion technique. Results showed that BCs treated with the essential oil from L. nobilis were inactive against S. aureus and slightly active against P. aeruginosa only over concentrations of 8% with maximum inhibition radius of 2 mm. On the contrary, biofilms loaded with essential oils of Oregano and C. zeylanicum were highly active against both pathogens with inhibition zone reaching as high as 13 and 16 mm, respectively.

___

  • [1] Petersen, N., & Gatenholm, N., (2011). Bacterial Cellulose-Based Materials and Medical Devices: Current State and Perspectives. Applied Microbiology and Biotechnology, 91(3), 1277-1286.
  • [2] Vazquez, A., Foresti, M.L., Cerrutti, P., & Galvagno M., (2013). Bacterial Cellulose from Simple and Low Cost Production Media by Gluconacetobacter xylinus. Journal of Polymers and the Environment, 21(2), 545-554.
  • [3] Aydın, Y.A., & Deveci Aksoy, N., (2014). Isolation and Characterization of an Efficient Bacterial Cellulose Producer Strain in Agitated Culture: Gluconacetobacter hansenii P2A. Applied Microbiology and Biotechnology, 98(3), 1065-1075.
  • [4] Maneerung, T., Tokura, S., & Rujiravanit, R., (2008). Impregnation of Silver Nanoparticles into Bacterial Cellulose for Antimicrobial Wound Dressing. Carbohydrate Polymers, 72(1), 43-51.
  • [5] Li, S.M., Jia, N., Ma, M.G., Zhang, Z., Liu, Q.H., & Sun, R.C., (2011). Cellulose–silver Nanocomposites: Microwave-assisted Synthesis, Characterization, Their Thermal Stability, and Antimicrobial Property. Carbohydrate Polymers, 86(2), 441- 447.
  • [6] Wei, B., Yang, G., & Hong, F., (2011). Preparation and Evaluation of a Kind of Bacterial Cellulose Dry Films with Antibacterial Properties. Carbohydrate Polymers, 84(1), 533-538.
  • [7] Gromovykh T.I., Sadykova, V.S., Lutcenko, S.V., Dmitrenok, A.S., Feldman, N.B., Danilchuk, T.N., & Kashirin, V.V., (2017). Bacterial Cellulose Synthesized by Gluconacetobacter hansenii for Medical Applications. Applied Biochemistry and Microbiology, 53(1), 60-67.
  • [8] Dadalıoğlu, I., & Evrendilek, G.A., (2004). Chemical Compositions and Antibacterial Effects of Essential Oils of Turkish Oregano (Origanum minutiflorum), Bay Laurel (Laurus nobilis), Spanish Lavender (Lavandula stoechas L.), and Fennel (Foeniculum vulgare) on Common Foodborne Pathogens. Journal of Agricultural and Food Chemistry, 52(26), 8255- 8260.
  • [9] Sukhtezari, S., Almasi, H., Pirsa, S., Zandi, M., & Pirouzifard M.K., (2017). Development of Bacterial Cellulose Based Slow-release Active Films by Incorporation of Scrophularia striata Boiss. extract. Carbohydrate Polymers, 156, 340–350.
  • [10] Kıvrak, Ş., Göktürk, T., & Kıvrak, İ., (2017). Assessment of Volatile Oil Composition, Phenolics and Antioxidant Activity of Bay (Laurus nobilis) Leaf and Usage in Cosmetic Applications. International Journal of Secondary Metabolite, 4(2), 148-161.
  • [11] Özcan, M., & Chalchat, J.-C., (2005). Effect of Different Locations on the Chemical Composition of Essential Oils of Laurel (L. nobilis L.) Leaves Growing in Turkey. Journal of Medicinal Food. 8(3), 408-411.
  • [12] Sangun, M.K., Aydin, E., Timur, M., Karadeniz, H., Caliskan, M., & Aydin, O., (2007). Comparison of Chemical Composition of the Essential Oil of Laurus nobilis L. Leaves and Fruits from Different Regions of Hatay, Turkey. Journal of Environmental Biology, 28(4) 731-733.
  • [13] Kazemi, M., & Mokhtariniya, S., (2016). Essential Oil Composition of Bark of Cinnamomum zeylanicum. Journal of Essential Oil Bearing Plants,19(3), 786-789.
  • [14] Unlu, M., Ergene, E., Unlu, G.V., Zeytinoglu H.S., & Vural, N., (2010). Composition, Antimicrobial Activity and in vitro Cytotoxicity of Essential Oil from Cinnamomum zeylanicum Blume (Lauraceae). Food and Chemical Toxicology, 48(11), 3274-3280.
  • [15] Li, Y.Q., Kong, D.X., & Wu, H. (2013). Analysis and Evaluation of Essential Oil Components of Cinnamon Barks using GC–MS and FTIR Spectroscopy. Industrial Crops and Products, 41, 269-278.
  • [16] Jiang, Z., Jiang, H., & Xie, P. (2013). Antifungal Activities Against Sclerotinia sclerotiorum by Cinnamomum cassia Oil and Its Main Components. Journal of Essential Oil Research, 25(6), 444-451.
  • [17] Baydar, H., Sağdiç, O., Özkan, G., & Karadoğan, T., (2004). Antibacterial Activity and Composition of Essential Oils from Origanum, Thymbra and Satureja species with Commercial Importance in Turkey. Food Control, 15(3),169-172.
  • [18] Kordali, S., Cakir, A., Ozer, H., Cakmakci, R., Esdek, M., & Mete, E., (2008). Antifungal, Phytotoxic and Insecticidal Properties of Essential Oil Isolated from Turkish Origanum acutidens and Its Three Components, Carvacrol, Thymol and p-Cymene. Bioresource Technology, 99(18), 8788-8795.
  • [19] Müller-Riebau, F., Berger, B., & Yegen, O., (1995). Chemical Composition and Fungitoxic Properties to Phytopathogenic Fungi of Essential Oils of Selected Aromatic Plants Growing Wild in Turkey. Journal of Agricultural and Food Chemistry, 43(8), 2262-2266.
  • [20] Schramm, M., & Hestrin, S. (1954). Synthesis of Cellulose by Acetobacter xylinum. 1: Micromethod for the Determination of Celluloses. Biochemical Journal, 56(1), 163-166.
  • [21] Seow, Y.X., Yeo, C.R., Chung, H.L., & Yuk, H.G., (2014). Plant Essential Oils as Active Antimicrobial Agents. Critical Reviews in Food Science and Nutrition, 54(5), 625-644.
  • [22] Shan, B., Cai, Y.Z., Brooks, J.D., & Corke, H. (2007). Antibacterial Properties and Major Bioactive Components of Cinnamon Stick (Cinnamomum burmannii): Activity Against Foodborne Pathogenic Bacteria. Journal of Agricultural and Food Chemistry, 55(14), 5484-5490.
  • [23] Khattak, W.A., Khan T., Ul-Islam M., Wahid F., & Park, J.K., (2015). Production, Characterization and Physico-Mechanical Properties of Bacterial Cellulose from Industrial Wastes. Journal of Polymers and the Environment, 23(1), 45-53.
  • [24] Barud, H.S., Regiani, T., Marques, R.F.C., Lustri, W.R., Messaddeq, Y., & Ribeiro, S.J.L., (2011). Antimicrobial Bacterial Cellulose-Silver Nanoparticles Composite Membranes. Journal of Nanomaterials, https://doi.org/10.1155/2011/721631.
  • [25] Walentowska, J., & Foksowicz-Flaczyk, J., (2013). Thyme Essential Oil for Antimicrobial Protection of Natural Textiles. International Biodeterioration and Biodegradation, 84, 407- 411.
  • [26] Peng, Y., & Li, Y., (2014). Combined Effects of Two Kinds of Essential Oils on Physical, Mechanical and Structural Properties of Chitosan Films. Food Hydrocolloids, 36, 287-293.
  • [27] López, P., Sánchez, C., Batlle, R., & Nerín C., (2007). Development of Flexible Antimicrobial Films Using Essential Oils as Active Agents. Journal of Agricultural and Food Chemistry, 55(21), 8814-8824.
International journal of advances in engineering and pure sciences (Online)-Cover
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Marmara Üniversitesi