Hidroksiapatit/Seryum Oksit Kompozitleri: Sinterlenebilme, Mikroyapısal, Mekanik ve İn-vitro Biyoaktivite Özellikleri

Bu çalışmada, seryum oksit (CeO2) ilavesinin ticari saflıktaki bir sentetik hidroksiapatitin (HA) sinterlenebilme, mikroyapısal, mekanik ve in-vitro biyoaktivite özelliklerine etkileri incelenmiştir. CeO2 ilavesiz HA 1100 oC sıcaklıkta dekompoze olmaya başlamış, CeO2 ilave edilmiş numunelerde dekompoze olma sıcaklığı ise 900 oC’ ye kadar düşmüştür. Sinterlenmiş numunelerin dekompoze olma oranı sinterleme sıcaklığının artmasıyla artmıştır. Saf HA’ nın dekompoze olma oranı yaklaşık % 5.8 iken, HA’ ya yapılan CeO2 katkı maddesi ağırlıkça% 2.5’ e ulaştığında %11.4’ e yükselmiştir. SEM görüntüleri 1100 oC’ nin üstündeki sıcaklıklarda sinterlenen saf HA’ nın yüzeyinde aşırı tane büyümelerinin yanı sıra mikroçatlakların meydana geldiğini göstermiştir. Mikroçatlaklar ayrıca HA-CeO2 kompozitlerinin yüzeyinde, 1300 oC sıcaklıkta sinterlendiklerinde gözlemlenmiştir. 1100 oC’ de sinterlenmiş HA-0.5CeO2 kompoziti, diğer HA-CeO2 kompozitlerine kıyasla daha yüksek kırılma tokluğu (Kıc) (2.510 ± 0.225 MPam-1/2) ve daha yüksek basma dayanımına (152.73 ± 6.31 MPa) sahiptir ve mekanik özellikleri saf HA’ dan yaklaşık 2-3 kat daha yüksektir. İn-vitro biyoaktivite testi sonuçları, numunelerin yüzeyindeki apatit katmanlarının farklı morfolojilerde olduğunu göstermiştir.

Hydroxyapatite/Cerium Oxide Composites: Sintering, Microstructural, Mechanical and In-vitro Bioactivity Properties

In the present study, the effects of cerium oxide (CeO2) additive on the sinterability, microstructural, mechanical and in-vitro bioactivityproperties of a commercially synthetic hydroxyapatite (HA) was investigated. HA without CeO2 additive started to decompose at 1100oC, but the decomposition temperature of the CeO2 added samples decreased up to 900 oC. Decomposition rate of the sintered samples increasedby increasing sintering temperature. It was about 5.8% for pure HA, and increased to 11.4% when the CeO2 additive to HA reachedto 2.5 wt%. SEM images showed that an excessive grain growth as well as microcracks occured on the surface of pure HA when it wassintered at the temperatures than that of 1100 oC. The microcracks were also observed on the surface of HA-CeO2 composites, when theywere sintered at 1300 oC. The composite of HA-0.5CeO2 sintered at 1100 oC possess the higher fracture toughness (Kıc) (2.510 ± 0.225MPam-1/2) and the higher compressive strength (152.73 ± 6.31 MPa) compared to other HA-CeO2 composites, and its mechanical propertiesare higher than that of pure HA at about 2-3 times. In-vitro bioactivity test results showed that apatite layers on the surface of the sampleswere in the different morphologies.

___

  • [1] Youness, R.A., Taha, M.A., & Ibrahim, M.A., (2017). Effect of sintering temperatures on the in vitro bioactivity, molecular structure and mechanical properties of titanium/carbonated hydroxyapatite nanobiocomposites. J. Mol. Struct., 1150, 188-195.
  • [2] Yetmez, M., Erkmen, Z.E., Kalkandelen, C., Ficai, A., & Oktar, F.N., (2017). Sintering effects of mullite-doping on mechanical properties of bovine hydroxyapatite. Mater. Sci. Eng., C 77 , 470-475.
  • [3] Zhou, Y., & Rahaman, M.N., (1997). Effect of redox reaction on the sintering behavior of cerium oxide. Acta Mater., 45(9), 3635-3639.
  • [4] Wang, X., Deng, L.L., Wang, L.Y., Dai, S.M., Xing, Z., Zhan, X.X., Lu, X.Z., Xie, S.Y., Huang, R.B., & Zheng, L.S., (2017). Cerium oxide standing out as an electron transport layer for efficient and stable perovskite solar cells processed at low temperature. J. Mater. Chem. A, 5, 1706-1712.
  • [5] Nakane, S., Tachi, T., Yoshinaka, M., Hirota, K., & Yamaguchi, O., (1997). Characterization and sintering of reactive cerium( IV) oxide powders prepared by the hydrazine method. J. Am. Ceram. Soc., 80(12), 3221-3224.
  • [6] Yan, B., Zhang, Y., Chen, G., Shan, R., Ma, W., & Liu, C., (2016). The utilization of hydroxyapatite-supported CaOCeO 2 catalyst for biodiesel production. Energ. Conver. Manage., 130, 156-164.
  • [7] Patil, S., Sandberg, A., Heckert, E., Self, W., & Seal, S., (2007). Protein adsorption and cellular uptake of cerium oxide nanoparticles as a function of zeta potential. Biomater., 28, 4600-4607.
  • [8] Hirst, S.M., Karakoti, A.S., Tyler, R.D., Sriranganathan, N., Seal, S., & Reilly, C.M., (2009). Anti-inflammatory properties of cerium oxide nanoparticles. Small, 5(24), 2848-2856.
  • [9] Gopi, D., Murugan, N., Ramya, S., Shinyjoy, E., & Kavitha, L., (2015). Ball flower like manganese, strontium substituted hydroxyapatite/cerium oxide dual coatings on the AZ91 Mg alloy with improved bioactive and corrosion resistance properties for implant applications. RSC Adv., 5, 27402-27411.
  • [10] Li, K., Yu, J., Xie, Y., You, M., Huang, L., & Zheng, X., (2017). The effects of cerium oxide incorporation in calcium silicate coating on bone mesenchymal stem cell and macrophage responses. Biol. Trace Elem. Res., 177, 148-158.
  • [11] Ivanchenko, L.A., Pinchuk, N.D., Parkhomei, A.R., Golovkova, M.E., Molchanovskaya, M.I., & Syabro, A.N., (2009). Effect of cerium dioxide on the properties of biogenic hydroxyapatite sintered with borosilicate glass. Powder Metall. Met. Ceram., 48 (5-6), 305-310.
  • [12] Gunduz, O., Gode, C., Ahmad, Z., Gökçe, H., Yetmez, M., Kalkandelen, C., Sahin, Y.M., & Oktar, F.N., (2014). Preparation and evaluation of cerium oxide-bovine hydroxyapatite composites for biomedical engineering applications. J. Mech. Behav. Biomed. Mater., 35, 70-76.
  • [13] Pazarlioglu, S., & Salman, S., (2017). Sintering effect on the microstructural, mechanical, and in vitro bioactivity properties of a commercially synthetic hydroxyapatite. J. Aust. Ceram. Soc., 53, 391-401.
  • [14] Majling, J., Znáik, A., Palová, S., Stevĭk, S., Kovalĭk, D.K., & Roy, A.R., (1997). Sintering of the ultrahigh pressure densified hydroxyapatite pure xerogels. J. Mater. Res., 12(1), 198-202.
  • [15] Ozawa, M. (2004). Effect of oxygen release on the sintering of fine CeO2 powder at low temperature. Scripta Mater., 50, 61-64.
  • [16] Pazarlioglu, S., & Salman, S., (2019). Effect of yttria on thermal stability, mechanical and in vitro bioactivity properties of hydroxyapatite/alumina composite. J. Ceram. Process Res., 20(1), 99-112.
  • [17] Kokubo, T., Yamamuro T., Hench L.L., & Wilson J., (1990). Handbook on Bioactive Ceramics: Bioactive Glasses and Glass-Ceramics. Vol. 1., CRC Press, Boca Raton, U.S.A. s. 1-5.
  • [18] Ruys, A.J., Wei, M., Sorrell, C.C., Dickson, M.R., Brandwood, A., & Milthorpe, B.K., (1995). Sintering effects on the strength of hydroxyapatite. Biomater.,16, 409-415.
  • [19] Fathi, M.H., Hanifi, A., & Mortazavi, V., (2008). Preparation and bioactivity evaluation of bone-like hydroxyapatite nanopowder. J. Mater. Process. Technol., 202, 536-542.
  • [20] Wang, A.J., Lu, Y.P., Zhu, R.F., Li, S.T., Xiao, G.Y., Zhao, G.F., & Xu, W.H., (2008). Effect of sintering on porosity, phase, and surface morphology of spray dried hydroxyapatite microspheres. J. Biomed. Mater. Res. A, 87(2), 557-562.
  • [21] Dorozhkin, S.V., (2008). Green chemical synthesis of calcium phosphate bioceramics. J. Appl. Biomater. Biomech., 6(2), 104-109.
  • [22] Mateus, A.Y.P., Barrias, C.C., Ribeiro, C., Ferraz, M.P., & Monteiro, F.J., (2008). Comparative study of nanohydroxyapatite microspheres for medical applications. J. Biomed. Mater. Res. A, 86(2), 483-493.
  • [23] Locardi, B., Pazzaglia, V.E., Gabbi, C., & Profilo, B., (1993). Thermal behaviour of hydroxyapatite intended for medical applications. Biomater., 44, 437-441.
  • [24] Muralithran, G., & Ramesh, S., (2000). The effects of sintering temperature on the properties of hydroxyapatite. Ceram. Inter., 26, 221-230.
  • [25] Frayssinet, P., Rouquet, N., Fages, J., Durand, M., Vidalain, P.O., & Bonell, G., (1997). The influence of sintering temperature on the proliferation of fibroblastic cells in contact with HA-bioceramics. J. Biomed. Mater. Res., 35, 337-347.
  • [26] Fanovich, M.A., Castro, M.S., & Lȯpez, J.M.P., (1998). Improvement of the microstructure and microhardness of hydroxyapatite ceramics by addition of lithium. Mater. Lett., 33, 269-272.
  • [27] Habibovic, P., Yuan, H., van der Valk, C.M., Meijer, G., van Blitterswijka, C.A., & de Groot, K., (2005). 3D micro environment as essential element for osteoinduction by biomaterials. Biomater., 26, 3565-3575.
  • [28] Hull, S., Norberg, S.T., Ahmed, I., Eriksson, S.G., Marrocchelli, D., & Madden, P.A., (2009). Oxygen vacancy ordering within anion-deficient ceria. J. Solid State Chem., 182, 2815- 2821.
  • [29] Zinkevich, M., Djurovic, D., & Aldinger, F., (2006). Thermodynamic modelling of the cerium-oxygen system. Solid State Ionics, 177, 989-1001.
  • [30] Kümmerle, E.A., & Heger G., (1999). The Structures of C-Ce2O3+δ, Ce7O12, and Ce11O20. J. Solid State Chem., 147, 485-500.
  • [31] Morais, D.S., Fernandes, S., Gomes, P.S., Fernandes, M.H., Sampaio, P., Ferraz, M.P., Santos, J.D., Lopes, M.A., & Hussain, N.S., (2015). Novel cerium doped glass-reinforced hydroxyapatite with antibacterial and osteoconductive properties for bone tissue regeneration. Biomed. Mater., 10(5), 055008.
  • [32] Gamoke, B., Neff, D., & Simons, J., (2009). Nature of PO bonds in phosphates. J. Phys. Chem. A, 113, 5677-5684.
  • [33] Li, X.W., Yasuda, H.Y., & Umakoshi, Y., (2006). Bioactive ceramic composites sintered from hydroxyapatite and silica at 1200oC: preparation, microstructures and in vitro bone-like layer growth. J. Mater. Sci. Mater. Med., 17, 573-581.
  • [34] Evis, Z. (2007). Reactions in hydroxylapatite-zirconia composites, Ceram. Inter., 33, 987-991.
  • [35] Upasani, M. (2017). Synthesis of Y3Al5O12:Tb & Y3Al5O12:Tb, Si phosphor by combustion synthesis: Comparative investigations on the structural and spectral properties. Opt. Mater., 64, 70-74
  • [36] Mikhailov, M.M., Vlasov, V.A., Yuryev, S.A., Neshchimenko, V.V., & Shcherbina, V.V., (2015). Optical properties and radiation stability of TiO2 powders modified by Al2O3, ZrO2, SiO2, TiO2, ZnO, and MgO nanoparticles. Dyes and Pigments, 123, 72-77.
  • [37] Tan, C.Y., Yaghoubi, A., Ramesh, S., Adzila, S., Purbolaksono, J., Hassan, M.A., & Kutty, M.G., (2013). Sintering and mechanical properties of MgO-doped nanocrystalline hydroxyapatite. Ceram. Inter., 39, 8979-8983.
  • [38] Hoepfner, T.P., & Case, E.D., (2004). An estimate of the critical grain size for microcracks induced in hydroxyapatite by thermal expansion anisotropy. Mater. Lett., 58, 489 – 492.
  • [39] Case, E.D., Smith, I.O., & Baumann, M.J., (2005). Microcracking and porosity in calcium phosphates and the implications for bone tissue engineering. Mater. Sci. Eng. A, 390, 246-254.
  • [40] Miao, X., Chen, Y., Guo, H., & Khor, K.A., (2004). Spark plasma sintered hydroxyapatite-yttria stabilized zirconia composites. Ceram. Inter., 30, 1793-1796.
  • [41] Sameshima, S., Kawaminami, M., & Hirata, Y., (2002). Thermal expansion of rare-earth-doped ceria ceramics, J. Ceram. Soc. Jpn., 110(7), 597-600.
  • [42] Ruseska, G., Fidancevska, E., & Bosser, J., (2006). Mechanical and thermal-expansion characteristics of Ca10(PO4)6(OH) 2-Ca3(PO4)2 composites. Science of Sintering, 38, 245-253.
  • [43] Chen, M., Lu, C., & Yu, J., (2007). Improvement in performance of MgO-CaO refractories by addition of nano-sized ZrO2. J. Eur. Ceram. Soc., 27, 4633-4638.
  • [44] Herliansyah, M.K., Hamdi, M., Ide-Ektessabi, A., Wildan, M.W., & Toque, J.A., (2009). The influence of sintering temperature on the properties of compacted bovine hydroxyapatite. Mater. Sci. Eng. C, 29, 1674-1680.
  • [45] Wang, P.E., & Chaki, T.K., (1993). Sintering behaviour and mechanical properties of hydroxyapatite and dicalcium phosphate. J. Mater. Sci. Mat. Med., 4, 150-158.
  • [46] Rootare, H.M., & Craig, R.G., (1974). Characterization of the compaction and sintering of hydroxyapatite powders by mercury porosimetry, Powder Technol., 9, 199-211.
  • [47] Miao, X., Chen, Y., Guo, H., & Khor, K.A., (2004). Spark plasma sintered hydroxyapatite-yttria stabilized zirconia composites. Ceram. Inter., 30, 1793-1796.
  • [48] Wang, X., Fan, H., Xiao, Y., & Zhang, X., (2006) . Fabrication and characterization of porous hydroxyapatite/β-tricalcium phosphate ceramics by microwave sintering. Mater. Lett., 60, 455-458.
  • [49] Alymov, M.I., Bakunova, N.V., Barinov, S.M., Belunik, I.A., Fomin, A.S., Ievlev, V.M., & Soldatenko, S.A., (2011). Specific features of the densification of hydroxyapatite nanopowders upon pressing. Nanotechnologies in Russia, 6(5-6), 353- 356.
  • [50] Pazarlioglu, S.S., Gokce, H., Ozyegin, L.S., & Salman, S., (2014). Effect of sintering on the microstructural and mechanical properties of meleagris gallopova hydroxyapatite. Bio- Med. Mater. Eng., 24, 1751-1769.
  • [51] Ryu, H.S., Youn, H.J., Hong, K.S., Chang, B.S., Lee, C.K., & Chung, S.S., (2002). An improvement in sintering property of β-tricalcium phosphate by addition of calcium pyrophosphate. Biomater., 23, 909-914.
  • [52] Mansour, S.F., El-dek, S.I., & Ahmed, M.K., (2017). Physico- mechanical and morphological features of zirconia substituted hydroxyapatite nano crystals. Sci. Rep., 7, 43202.
  • [53] Hoepfner, T.P., & Case, E.D., (2003). The influence of the microstructure on the hardness of sintered hydroxyapatite. Ceram. Inter., 29, 699-706.
  • [54] Wang, J., & Shaw, L.L., (2009). Nanocrystalline hydroxyapatite with simultaneous enhancements in hardness and toughness. Biomater., 30, 6565-6572.
  • [55] Zhu, Q., Ablikim, Z., Chen, T., Cai, Q., Xia, J., Jiang, D., & Wang, S., (2017). The preparation and characterization of HA/β-TCP biphasic ceramics from fish bones. Ceram. Inter., 43, 12213-12220.