Numerical investigation of aerodynamic performance and noise characteristic of air multiplier bladeless fan

Numerical investigation of aerodynamic performance and noise characteristic of air multiplier bladeless fan

Air multiplier fans, which are produced as an alternative to the convectional propellers used today, have come into prominence with the advantages providing in both efficiency and usage. In this study, three different blade profiles based on NACA 0012, NACA 1408, and EPPLER 1214 were used in the fan body. The design based on the NACA 0012 of body profile provided the highest flow rate. This profile was optimized using CFD analysis according to seven different geometrical parameters determined as the angle of attack, width, length, gap, inner and outer diameters, and tail length. The profile that provides less noise against the highest flow rate was determined as the optimal design. With CFD analysis, the sound pressure level of the optimal design was calculated by the k-ω and LES method, and the results were compared with each other.

___

  • 1. Bleier, F. P., Fan Handbook: Selection, Application and Desing. 1998, USA: McGraw-Hill.
  • 2. Dyson UK. [cited 2020 20 June]; Available from: https://youtu.be/gChp0Cy33eY/.
  • 3. Li, G., Hu, Y., Jin, Y., Setoguchi, T., and Kim, H. D., Influence of Coanda surface curvature on performance of bladeless fan. Journal of thermal science, 2014. 23(5): p. 422-431.
  • 4. Lasse, C. H., and Simon, H. T., Flow Characteristics of the Dyson Air Multiplier. Semantic Scholar, 2014. 14(7).
  • 5. Li, H., Deng, H. S., & Lai, Y. B., Numerical and experimental research on the outlet flow field for the air multiplier. Applied Thermal Engineering, 2016. 93: p. 652-659.
  • 6. Jafari, M., Afshin, H., Farhanieh, B., & Sojoudi, A., Numerical investigation of geometric parameter effects on the aerodynamic performance of a Bladeless fan. Alexandria Engineering Journal, 2016. 55(1): p. 223-233.
  • 7. Zafer, B., Gürsoy, S., Üflemeli kontrol sistemine sahip kanat kesitinin aeroakustik incelenmesi. Uludağ Üniversitesi Mühendislik Fakültesi Dergisi, 2016. 21(2): p. 237-256.
  • 8. E. Kocak., E. Ayli., H.Turkoglu, Kanat profili - silindir konfigürasyonunun aerodinamik ve aeroakustik performansinin sayisal analizi, in 14th Ulusal Tesisat Mühendisliği Kongresi. 2019. İzmir: p. 908-917.
  • 9. İlter, Y.K., İki Boyutlu Cisimler Etrafındaki Akım Gürültüsünün İncelenmesi. 2014, İstanbul Teknik Üniversitesi, Fen Bilimleri Enstitüsü, Gemi İnşaatı ve Gemi Makinaları Mühendisliği Anabilim Dalı, Yüksek Lisans Tezi.
  • 10. A.Bacak., A. Pinarbasi Eksenel fan akustik performansinin sayisal olarak incelenmesi, in 4th Uluslararasi Katilimli Anadolu Enerji Sempozyumu. 18-20 Nisan 2018. Edirne: p 798-804.
  • 11. Li, A., Characterization of Aerodynamic and Aeroacoustic Performance of Bladeless Fans. 2019, Doctoral dissertation, Purdue University Graduate School.
  • 12. Mehmood, K., Shahzad, A., Masud, J., Akram, F., Mumtaz, M. N., & Shams, T. A., Numerical analysis of bladeless ceiling fan: An effective alternative to conventional ceiling fan. Journal of Wind Engineering and Industrial Aerodynamics, 2022. 221: 104905.
  • 13. Ravi, D., & Rajagopal, T. K. R., Numerical investigation on the effect of geometric shape and outlet angle of a bladeless fan for flow optimization using CFD techniques. International Journal of Thermofluids, 2022. 15: 100174.
  • 14. Jafari, M., Sojoudi, A., & Hafezisefat, P., Numerical study of aeroacoustic sound on performance of bladeless fan. Chinese Journal of Mechanical Engineering, 2017. 30(2): p. 483-494.
  • 15. Li, H., Jin, X. H., Deng, H. S., & Lai, Y. B., Experimental investigation on the outlet flow field structure and the influence of Reynolds number on the outlet flow field for a bladeless fan. Applied Thermal Engineering, 2016. 100: p. 972-978.
  • 16. Joshi, V.; Noronha, W.; G, V.; Ramasamy, S.; K B, R. Determination of Optimum Outlet Slit Thickness and Outlet Angle for the Bladeless Fan Using CFD. Preprints, 2022. 2022110459: p 1-17.
  • 17. Zhou, J., Hatami, M., Song, D., & Jing, D., Design of microchannel heat sink with wavy channel and its time-efficient optimization with combined RSM and FVM methods. International Journal of Heat and Mass Transfer, 2016. 103: p. 715-724.