Green biosynthesis, characterization of silver nanoparticles using a green alga Spirogyra sp., and their antioxidant and enzyme activities

Green biosynthesis, characterization of silver nanoparticles using a green alga Spirogyra sp., and their antioxidant and enzyme activities

A simple, environmentally friendly, inexpensive, and one-step alternative method was reported for the green biosynthesis of silver nanoparticles (AgNPs) operating the Spirogyra sp. extract as a reducing and stabilizing substance. Concentration of AgNO3 and reaction time were optimized to prepare AgNPs under controlled conditions. The synthesized silver nanoparticles were characterized by UV-Vis absorption spectroscopy, fourier transform infrared spectroscopy (FT-IR), transmission electron microscopy (TEM), energy dispersive X-ray analysis (EDX), and elemental mapping. The TEM analysis showed that the average particle size of AgNPs was 18.3 nm. Structural details of silver nanoparticles elucidated by Selected Area Electron Diffraction (SAED) based on TEM images. In addition, biological activity tests were applied to nanoparticles and algal extracts to determine antioxidant activity (3 different tests: DPPH (1,1-diphenyl-2-picrylhydrazil) radical scavenging activity, total phenolic content (TPC) and total flavonoid content (TFC)) and α-glucosidase enzyme inhibition. Antioxidant activity and α-glucosidase enzyme inhibition values of silver nanoparticles are higher than the values of Spirogyra sp. extracts.

___

  • 1. Elias, E., E. Elemike, D. Olugbenga, D. Inyang, J. Samuel, and O. Chinedu, 2-Imino-(3,4-dimethoxybenzyl) ethanesulfonic acid Schiff base anchored silver nano-complex mediated by sugar cane juice and their antibacterial activities. J Appl Res Technol, 2016. 14: p. 38-46,
  • 2. Husen, A., and K. S. Siddiq, Phytosynthesis of nanoparticles: concept, controversy and application. Nanoscale Res Lett, 2014. 9(1): p. 9-229.
  • 3. Sakar, M., S. Balakumar, P. Saravanan, and S. N. Jaisankar, Annealing temperature mediated physical properties of bismuth ferrite (BiFeO3) nanostructures synthesized by a novel wet chemical method. Mater Res Bull, 2013. 48: p. 2878–2885.
  • 4. Tang B, L. Yuan, T. Shi, L. Yu, Y. Zhu, Preparation of nano-sized magnetic particles from spent pickling liquors by ultrasonic-assisted chemical co-precipitation. J Hazard Mater, 2009. 163: p. 1173–1178.
  • 5. Chen. X., T. Todorova, A. Vimont, V. Ruaux, Z. Qin, J. P. Gilson, and V. Valtchev. In situ and post-synthesis control of physicochemical properties of FER-type crystals. Microporous Mesoporous Mater, 2014. 200: p. 334–342.
  • 6. Annamalai, A., V. L. P. Christina, D. Sudha, M. Kalpana, and P. T. V. Lakshmi, Green synthesis, characterization and antimicrobial activity of Au NPs using Euphorbia hirta L. leaf extract. Colloids Surf. B: Biointerfaces, 2013. 108: p: 60–65.
  • 7. Das, S. K., and E. Marsili “Bioinspired metal nanoparticle: synthesis, properties and application,” in Nanotechnology and Nanomaterials. InTech, 2011. 11: p. 253–278.
  • 8. Faraday M., Experimental relations of gold (and other metals) to light. Philos Trans R Soc Lond B Biol Sci, 1857. 147 : p. 145–181.
  • 9. Grier N., Silver and Its Compounds. In: Block, S.S., Ed., Disinfection, Sterilization and Preservation. Lee and Febiger, Philadelphia, 1968. p. 375-398.
  • 10. Hill, W. R. and D. M. Pillsbury, Argyria—The Pharmacology of Silver. Williams and Williams, Baltimore 1939.
  • 11. Galib, M. Barve, M. Mashru, C. Jagtap, B. J. Patgiri and P. K. Prajapati, Therapeutic potentials of metals in ancient India: A review through Charaka Samhita. J Ayurveda Integr Med, 2011. 2(2): p. 55-63.
  • 12. Stevens, K. N. J., O. Crespo-Biel, E. E. M. van den Bosch, A. A. Dias, M. L. W. Knetsch, Y. B. J. Aldenhoff, F. H. van der Veen, J. G. Maessen, E. E. Stobberingh, and L. H. Koole The relationship between the antimicrobial effect of catheter coatings containing silver nanoparticles and the coagulation of contacting blood. Biomaterials, 2009. 30: p. 3682–3690.
  • 13. Austin, L. A., M. A. Mackey, E. C. Dreaden, and M. A. El-Sayed. The optical, photothermal, and facile surface chemical properties of gold and silver nanoparticles in biodiagnostics, therapy, and drug delivery. Arch Toxicol, 2014. 88(7): p. 1391–1417.
  • 14. Lv, Y., H. Liu, Z. Wang, S. Liu, L. Hao, Y. Sang, D. Liu, J. Wang, and R. I. Boughton Silver nanoparticle-decorated porous ceramic composite for water treatment. J. Membr. Sci, 2009. 331: p. 50–56.
  • 15. Martinez-Abad, A., J. M. Lagaron, and M. J. Ocio, Development and characterization of silver-based antimicrobial ethylene-vinyl alcohol copolymer (EVOH) films for food-packaging applications. J Agric Food Chem, 2012. 60: p. 5350-5359.
  • 16. Zhang, F., X. Wu, Y. Chen and Lin H, Application of silver nanoparticles to cotton fabric as an antibacterial textile finish. Fibers Polym, 2009. 10(4): p. 496-501.
  • 17. Sani, E., P. D. Ninni, L. Colla, S. Barison and F. Agresti, Optical Properties of Mixed Nanofluids Containing Carbon Nanohorns and Silver Nanoparticles for Solar Energy Applications. J. Nanosci Nanotechnol, 2015. 15(5): p. 3568-3573.
  • 18. Arroyo, G. V., A. T. Madrid, A. F. Gavilanes, B. Naranjo, A. Debut, M. T. Arias and Y. Angulo, Green synthesis of silver nanoparticles for application in cosmetic. J Environ Sci Health Part A, 2020. 55(11): p. 1304-1320.
  • 19. Song, K. C., S. M. Lee, T. S. Park, and B. S. Lee, Preparation of colloidal silver nanoparticles by chemical reduction method. Korean J. Chem. Eng, 2009. 26(1): p. 153-155.
  • 20. Steinigeweg, D., and S. Schlücker, Monodispersity and size control in the synthesis of 20–100 nm quasi-spherical silver nanoparticles by citrate and ascorbic acid reduction in glycerol–water mixtures. Chem Commun, 2012. 48: p. 8682-8684.
  • 21. Anastas, P. T. and J. C. Warner, Green Chemistry; Oxford University Press: Oxford, UK, 2000.
  • 22. Gałuszka, A., Z. Migaszewski, J. Namies´nik, The 12 principles of green analytical chemistry and the significance mnemonic of green analytical practices. Trends Anal Chem Trends, 2013. 50: p. 78–84.
  • 23. Gurunathan, S., K. Kalishwaralal, R. Vaidyanathan, V. Deepak, S. R. K. Pandian, J. Muniyandi, N. Hariharan, S. H. Eom, Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli. Colloids Surf. B Biointerfaces, 2009. 74: p. 328–335.
  • 24. Sivaraj, A., V. Kumar, R. Sunder, K. Parthasarathy, and G. Kasivelu, Commercial Yeast Extracts Mediated Green Synthesis of Silver Chloride Nanoparticles and their Anti-mycobacterial. Activity J Clust Sci, 2020. 31: p. 287–291.
  • 25. Sanghi, R., and P. Verma, Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol, 2009. 100: p. 501–504.
  • 26. Shaligram, N. S., M. Bule, R. Bhambure, R. S. Singhal, S. K. Singh, G. Szakacs and A. Pandey, Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem, 2009. 44: p. 939–943.
  • 27. Pugazhendhi, A., D. Prabakar, J. M. Jacob, I. Karuppusamy, R. G. Saratale, Synthesis and characterization of silver nanoparticles using Gelidium amansii and its antimicrobial property against various pathogenic bacteria. Microb Pathog, 2018. 114: p. 41–45.
  • 28. Kathiraven, T., A. Sundaramanickam, N. Shanmugam, T. Balasubramanian, Green synthesis of silver nanoparticles using marine algae Caulerpa racemosa and their antibacterial activity against some human pathogens. Appl Nanosci, 2015. 5: p. 499–504.
  • 29. Kumar, P., S. S. Selvi, A. L. Prabha, K. P. Kumar, R. S. Ganeshkumar, and M. Govindaraju, Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its anti-bacterial activity. Nano Biomed. Eng, 2012. 4(1): p. 12–16.
  • 30. Rolim W. R., M. T. Pelegrino, B. de Araújo Lima, L. S. Ferraz, F. N. Costa, , J. S. Bernardes, T. Rodigues and M. Brocchic, Green tea extract mediated biogenic synthesis of silver nanoparticles: Characterization, cytotoxicity evaluation and antibacterial activity. Appl Surf Sci, 2019. 463: p. 66−74.
  • 31. Ghanbar, F., A. Mirzaie, F. Ashrafi, H. Noorbazargan, M. D. Jalali, S. Salehi, S. A. S. Shandiz, Antioxidant, antibacterial and anticancer properties of phyto-synthesised Artemisia quttensis Podlech extract mediated AgNPs. IET Nanobiotechnol, 2017. 11(4): p. 485–492.
  • 32. Saravanakumar, K., R. Chelliah, S. Shanmugam, N.B. Varukattu, D. H. Oh, K. Kathiresan, and M.-H. Wang, Green synthesis and characterization of biologically active nanosilver from seed extract of Gardenia jasminoides Ellis. J Photochem Photobiol B, 2018. 185: p. 126–135.
  • 33. Islam, S.-U., B. S. Butola, A. Gupta, and A. Roy, Multifunctional finishing of cellulosic fabric via facile, rapid in-situ green synthesis of AgNPs using pomegranate peel extract biomolecules. Sustain Chem Pharm, 2019. 12: p. 100-135.
  • 34. Li, A. N., S. Li, Y. J. Zhang, X. R. Xu, Y. M. Chen, and H. B. Li, Resources and biological activities of natural polyphenols. Nutrients, 2014. 6: p. 6020-6047.
  • 35. Majumdar, M., S. Shivalkar, A. Pal, M. L. Verma, A. K. Sahoo, and D. N. Roy, Chapter 15 - Nanotechnology for enhanced bioactivity of bioactive compounds. Biotechnological Production of Bioactive Compounds, Elsevier, 2020. p. 433-466.
  • 36. Akar, B., Z. Akar and B. Sahin. Identification of Antioxidant Activity by Different Methods of a Freshwater Alga Microspora Sp. Collected From a High Mountain Lake. Hittite J of Sci and Eng, 2019. 6(1): p. 25-29.
  • 37. Elgamouz, A., H. Idriss, C. Nassab, A. Bihi, K. Bajou, K. Hasan, M. A. Haija, and S. P. Patole, Green Synthesis, Characterization, Antimicrobial, Anti-Cancer, and Optimization of Colorimetric Sensing of Hydrogen Peroxide of Algae Extract Capped Silver Nanoparticles. Nanomater, 2020. 10: p. 1861-1880.
  • 38. Salari, Z., F. Danafar, S. Dabaghi, and S. A. Ataei, Sustainable synthesis of silver nanoparticles using macroalgae Spirogyra varians and analysis of their antibacterial activity. Journal of Saudi Chemical Society 2016. 20(4): p. 459–464.
  • 39. Sivaraman, S. K., I. Elango, S. Kumar, and V. A. Santhanam, A green protocol for room temperature synthesis of silver nanoparticles in seconds. Curr Sci, 2009. 97(10): p. 1055–1059.
  • 40. Hartland, G. V., Optical studies of dynamics in noble metal nanostructures. Chem Rev, 2011. 111: p. 3858–3887.
  • 41. Brand-Williams, W., M. E. Cuvelier, and C. Berset, Use of a free radical method to evaluate antioxidant activity. Food Sci Technol_LEB, 1995. 28: p. 25–30.
  • 42. Slinkard, K. and V. L. Singleton, Total phenol analysis: Automation and comparison with manual methods. Am J Enol Vitic, 1977. 28(1): p. 49–55.
  • 43. Fukumoto L. R., and G. Mazza, Assessing antioxidant and prooxidant activities of phenolic compounds. J Agric Food Chem, 2000. 48: p. 3597–3604.
  • 44. Yu Z, Y. Yin, W. Zhao, J. Liu, and F. Chen, Anti-diabetic activity peptides from albumin against a-glucosidase and a-amylase, Food Chemistry, 2012. 135: p. 2078–2085.
  • 45. Henglein, A. Physicochemical properties of small metal particles in solution: microelectrode reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J Phys Chem, 1993. 97(21): p. 5457–5471.
  • 46. Soliman, H., A. Elsayed, and A. Dyaa, Antimicrobial activity of silver nanoparticles biosynthesised by Rhodotorula sp. strain ATL72. Egypt J basic Appl Sci, 2018. 5(3): p. 228–233.
  • 47. Kalimuthu, K., R. S. Babu, D. Venkataraman, M. Bilal, S. Gurunathan, Biosynthesis of silver nanocrystals by Bacillus licheniformis. Colloids Surf. B Biointerfaces, 2008. 65: p. 150–153.
  • 48. Ayo, R. G., J. O. Amupitan, I. G. Ndukwe, and O. T. Audu, Some chemical constituents of the leaves of Cassia nigricans. Vahl. Afr J Pure Appl Chem, 2009. 3(11): p. 208–11.
  • 49. Kaswar, S. M. A., G. Mostafa, E. Huq, N. Nahar, Y. Ozeki, Chemical constituents and hemolytic activity of Macrotyloma uniflorum L. Int J Biol Chem (2009) 3(1): p. 42–8.
  • 50. Selvi, J. A., S. Rajendran, V. G. Sri, A. J. Amalraj, and B Narayanasamy, Corrosion inhibition by beet root extract. Port Electrochimica Acta, 2009. 27(1): p. 1-11.
  • 51. Chang Chien, S. W., M. C. Wang, C. C. Huang, and K. Seshaiah, Characterization of humic substances derived from swine manure-based compost and correlation of their characteristics with reactivities with heavy metals. J Agric Food Chem, 2007. 55: p. 4820–7.
  • 52. Bedlovičová, Z., I. Strapáč, M. Baláž, and A. Salayová, A brief overview on antioxidant activity determination of silver nanoparticles. Mol 2020. 25:3191-3215.
  • 53. Docea, A. O., D. Calina, A. M. Buga, O. Zlatian, M.M.B. Paoliello, G. D. Mogosanu, C. T. Streba, E. L. Popescu, A. E. Stoica, A. C., Bîrcă, B. Ş. Vasile, A. M. Grumezescu and L. Mogoanta, The effect of silver nanoparticles on antioxidant/pro-oxidant balance in a Murine Model. International Journal of Molecular Sciences, 2021. 21: p. 1233-1239.
  • 54. Kumar, S., S. Narwal, V. Kumar, and O. Prakash, α-glucosidase inhibitors from plants: A natural approach to treat diabetes. Pharmacogn. Rev, 2011. 5(9):19-29.
  • 55. Balan, K., W. Qing, Y. Wang, X. Liu, T. Palvannan, Y. Wang and, Y. Zhang, Antidiabetic activity of silver nanoparticles from green synthesis using Lonicera japonica leaf extract. RSC Adv, 2016. 6(46): p. 40162-40168.
  • 56. Jini, D., and S. Sharmila, Green synthesis of silver nanoparticles from Allium cepa and its in vitro antidiabetic activity. Mater Today Proc, 2020. 22: p. 432–438