Zararlılarla Mücadelede Birlik İçi Avcılığın Parazitoitler Üzerine Etkisi

Birlik içi avcılık (Intraguild predation, IGP), kısaca bir doğal düşmanın diğeri tarafından tüketilmesi olarak tanımlanır ve zararlılarla mücadeleyi olumsuz yönde etkileyebilecek yaygın bir olgudur. Biyolojik mücadele uygulamalarında parazitoitler zararlı böceklerin önemli doğal düşmanları arasında yer almaktadır ve genellikle IGP'den olumsuz yönde etkilenmektedirler. Zararlı böcek popülasyonlarının baskılanmasını engelleyen parazitoit ve birlik içi avcılık interaksiyonunda matematiksel modeller geliştirmek mümkündür. Genellikle, bir birlik içi avcının, parazitoitler üzerindeki IGP oranı, zararlı böcek üzerindeki avcılık oranından yüksek olduğu durumlarda zararlı böcek mücadelesini engellediği araştırıcılar tarafından saptanmıştır. Birlik içi avcıların doğrudan parazitoit erginlerine saldırdığı veya parazitlenmemiş konukçulara göre parazitlenmiş konukçuları tercih ettiği örneklerde, bu durumun zararlı böceklerin baskılanmasını engellendiği gözlenebilmektedir. Ancak parazitoitlerin farklı savunma reaksiyonları sayesinde birlik içi avcılığın etkisi en düşük düzeye inmektedir. Birlik içi avcılığın zararlıların mücadelesi üzerindeki olumsuz etkileri parazitoit ve predatör davranışlarının daha iyi anlaşılmasıyla çözüme kavuşacaktır.

The Effect of Intraguild Predation on Parasitoids in Pest Control

Intraguild predation (IGP) is defined as the consumption of one natural enemy by another and is a common phenomenon that can negatively affect pest control. In biological control applications, parasitoids are among the important natural enemies of harmful insects and they are generally adversely affected by IGP. It is possible to develop mathematical models for the interaction of parasitoid and IGP, which prevents the suppression of pest populations. Generally, it has been determined by researchers that an intraguild predator inhibits pest control when the rate of IGP on parasitoids is higher than the rate of predation on pests. There are instances where IGP predators directly attack parasitoid adults or prefer parasitized hosts over non-parasitized hosts. This event prevents the suppression of harmful insects. However, due to the different defense reactions of parasitoids, the effect of IGP is minimized. The negative effects of IGP on pest control will be resolved with a better understanding of parasitoid and predator behaviors.

___

  • Altieri, M. A. (1991). Classical biological control and social equity. Bulletin of Entomological Research, 81: 365–369.
  • Arim, M., & Marquet, P. A. (2004). Intraguild predation: A widespread interaction related to species biology. Ecology Letters, 7, 557–564. doi: 10.1111/j.1461-0248.2004.00613.x.
  • Borer, E. T., Murdoch, W. W., & Swarbrick, S. L. (2004). Parasitoid coexistence: linking spatial field patterns with mechanism. Ecology, 85, 667–78. https://doi.org/10.1890/02-0566.
  • Briggs, C. J., & Borer, E. T. (2005). Why short-term experiments may not allow long-term predictions about intraguild predation. Ecological Applications, 15, 1111–17. https://doi.org/10.1890/04-1776.
  • Brodeur, J., & McNeil, J. N. (1989). Seasonal microhabitat selection by an endoparasitoid through adaptive modification of host behavior. Science, 244: 226–8. DOI: 10.1126/science.244.4901.226.
  • Brodeur, J., & McNeil, J. N. (1992). Host behavior modification by the endoparasitoid Aphidius nigripes: a strategy to reduce hyperparasitism. Ecological Entomology, 17, 97–104. DOI:10.1111/j.1365-2311.1992.tb01164.x.
  • Brodeur, J., & Vet, L. E. M. (1994). Usurpation of host behavior by a parasitic wasp. Animal Behavior, 48, 187–92. https://doi.org/10.1006/anbe.1994.1225.
  • Brodeur, J., & Rosenheim, J. A. (2000). Intraguild interactions in aphid parasitoids. Entomologia Experimentalis et Applicata, 97, 93–108. https://doi.org/10.1046/j.1570-7458.2000.00720.
  • Carpenter, S. R., & Kitchell, J. F. (1993). The Trophic Cascade in Lakes. Cambridge University Press, Cambridge.
  • Carpenter, S. R., Kitchell, J. F., & Hodgson, J. R. (1985). Cascading trophic interactions and lake productivity. Bioscience, 35, 634–9. https://doi.org/10.2307/1309989.
  • Colfer, R. G., & Rosenheim, J. A. (2001). Predation on immature parasitoids and its impact on aphid suppression. Oecologia, 126: 292–304. DOI: 10.1007/s004420000510.
  • Ehler, L. E. (1995). Biological control of obscure scale (Homoptera, Diaspididae) in California – an experimental approach. Environmental Entomology, 24, 779–95. https://doi.org/10.1093/ee/24.4.779.
  • Godfray, H. C. J. (1994). Parasitoids, Behavioural and Evolutionary Ecology. Princeton University Press, Princeton.
  • Hairston, N. G., Smith, F. E., & Slobodkin, L. B. (1960). Community structure, population control and competition. American Naturalist, 94, 421–5.
  • Halaj, J., & Wise, D.H. (2001). Terrestrial trophic cascades: how much do they trickle?. American Naturalist, 157, 262–81. DOI: 10.1086/319190.
  • Heimpel, G.E., Rosenheim, J. A., & Mangel, M. (1997). Predation on adult Aphytis parasitoids in the field. Oecologia, 110, 346–52.
  • Hemptinne, J. L., Lognay, G., Doumbia, M., & Dixon, A. F. G. (2001). Chemical nature and persistence of the oviposition deterring pheromone in the tracks of the two spot ladybird, Adalia bipunctata (Coleoptera: Coccinellidae). Chemoecology, 11, 43–7.
  • Hoelmer, K. A., Osborne, L. S., & Yokomi, R. K. (1994). Interactions of the whitefly predator Delphastus pusillus (Coleoptera: Coccinellidae) with parasitized sweetpotato whitefly (Homoptera: Aleyrodidae). Environmental Entomology, 23: 136–9. DOI:10.1093/ee/23.1.136.
  • Hunter, M. S., Collier, T. R., & Kelly, S. E. (2002). Does an autoparasitoid disrupt host suppression provided by a primary parasitoid?. Ecology, 83, 1459–69. https://doi.org/10.1890/0012-9658(2002)083[1459:DAADHS]2.0.CO;2.
  • Kindlmann, P., & Ruzicka, Z. (1992). Possible consequences of a specific interaction between predators and parasites of aphids. Ecological Modeling, 61, 253–65. https://doi.org/10.1016/0304-3800(92)90021-6.
  • Kosaki, A., & Yamaoka, R. (1996). Chemical composition of footprints and cuticular lipids of three species of ladybird beetles. Japanese Journal of Applied Entomology & Zoology, 40, 47–53.
  • Lathrop, R. C., Johnson, B. M., & Johnson, T. B. vd. (2002). Stocking piscivores to improve fishing and water quality: a synthesis of the Lake Mendota biomanipulation project. Freshwater Biology, 47, 2410–24. https://doi.org/10.1046/j.1365-2427.2002.01011.x.
  • Mustu, M., Kilincer, N., Ulgenturk, S., & Kaydan, M. B. (2008). Feeding behavior of Cryptolaemus montrouzieri mealybugs parasitized by Anagyrus pseudococci. Phytoparasitica, 36 (4), 360-367.
  • Nakashima, Y., & Senoo, N. (2003). Avoidance of ladybird trails by an aphid parasitoid Aphidius ervi: active period and effects of prior oviposition experience. Entomologia Experimentalis et Applicata, 109, 163–6. DOI:10.1046/j.1570-7458.2003.00094.x.
  • Nakashima, Y., Birkett, M. A., Pye, B. J., Pickett, J. A., & Powell, W. (2004). The role of semiochemicals in the avoidance of the seven-spot ladybird, Coccinella septempunctata, by the aphid parasitoid, Aphidius ervi. Journal of Chemical Ecology, 30, 1103–16. DOI: 10.1023/b:joec.0000030266.81665.19.
  • Oksanen, L., Fretwell, S. D., Arruda, J., & Niemelä, P. (1981). Exploitation ecosystems in gradients of primary productivity. American Naturalist, 118, 240–61.
  • Polanczyk, R. A., & Pratissoli, D. (2009). Biological control of agricultural pests: principles and field applications. Revista Ceres, 56, (4), 410-419.
  • Polis, G. A. (1991). Complex trophic interactions in deserts: an empirical critique of food-web theory. American Naturalist, 138: 123–55.
  • Polis, G. A., & Holt, R. D. (1992). Intraguild predation: the dynamics of complex trophic interactions. Trends in Ecology & Evolution, 7, 151–4. https://doi.org/10.1016/0169-5347(92)90208-S.
  • Polis, G. A., Myers, C. A., & Holt, R. D. (1989). The ecology and evolution of intraguild predation: potential competitors that eat each other. Annual Review of Ecology & Systematics, 20, 297–330.
  • Potter Tamara, I., Greenville Aaron, C., & Dickman Christopher, R. (2018). Assessing the potential for intraguild predation among taxonomically disparate micro-carnivores: marsupials and arthropods Royal Society Open Science, 5171872. http://doi.org/10.1098/rsos.171872.
  • Raymond, B., Darcy, A. C., & Douglas, A. E. (2000). Intraguild predators and the spatial distribution of a parasitoid. Oecologia, 124, 367–72.
  • Rees, N. E., & Onsager, J. A. (1982). Influence of predators on the efficiency of Blaesoxipha spp. parasites of the migratory grasshopper. Environmental Entomology, 11, 426–8. https://doi.org/10.1093/ee/11.2.426.
  • Rosenheim, J. A., Kaya, H. K., Ehler, L. E., Marois, J. J., & Jaffee, B. A. (1995). Intraguild predation among biological-control agents: theory and practice. Biological Control, 5, 303–35. https://doi.org/10.1006/bcon.1995.1038.
  • Shiojiri, K., & Takabayashi, J. (2005). Parasitoid preference for host-infested plants in affected by the risk of intraguild predation. Journal of Insect Behavior, 18, 567–76.
  • Shurin, J. B., Borer, E. T., & Seabloom, E. W. vd. (2002). A cross-ecosystem comparison of the strength of trophic cascades. Ecology Letters, 5, 785–91. https://doi.org/10.1046/j.1461-0248.2002.00381.x.
  • Snyder, W. E., & Ives, A. R. (2001). Generalist predators disrupt biological control by a specialist parasitoid. Ecology, 82, 705–16.
  • Snyder, W. E., & Ives, A. R. (2003). Interactions between specialist and generalist natural enemies: parasitoids, predators, and pea aphid biocontrol. Ecology, 84, 91–107.
  • Snyder, W. E., Ballard, S. N., & Yang, S. vd. (2004). Complementary biocontrol of aphids by the ladybird beetle Harmonia axyridis and the parasitoid Aphelinus asychis on glasshouse roses. Biological Control, 30, 229–35. https://doi.org/10.1016/j.biocontrol.2004.01.012.
  • Snyder, W. E., & Ives, A. R. (2008). Behavior Influences Whether Intra-Guild Predation Disrupts Herbivore Suppression by Parasitoids. In Behavioral Ecology of Insect Parasitoids: From Theoretical Approaches to Field (Eds Wajnberg E., Bernstein, C., & van Alphen, J.)pp 71-91.
  • Strong, D.R. (1992). Are trophic cascades all wet? Differentiation and donor-control in speciose ecosystems. Ecology, 73, 747–54.
  • Taylor, A. J., Muller, C. B., & Godfray, H. C. J. (1998). Effect of aphid predators on oviposition behavior of aphid parasitoids. Journal of Insect Behavior, 11, 297–302.
  • Tostawaryk, W. (1971). Relationship between parasitism and predation of diprionid sawflies. Annals of the Entomological Society of America, 64, 1424–7.
  • Traugott, M., Bell, J. R., Raso, L., Sint, D., & Symondson, W. O .C. (2012). Generalist predators disrupt parasitoid aphid control by direct and coincidental intraguild predation. Bulletin of Entomological Research, 102, 239–247. DOI: 10.1017/S0007485311000551.
  • Velasco-Hernández, M. C., Ramirez-Romero, R., Cicero, L., Michel-Rios, C., & Desneux, N. (2013) Intraguild Predation on the Whitefly Parasitoid Eretmocerus eremicus by the Generalist Predator Geocoris punctipes: A Behavioral Approach. PLoS ONE 8(11): e80679. https://doi.org/10.1371/journal.pone.0080679.
  • Wang, S., Brose, U., & Gravel, D. (2019). Intraguild predation enhances biodiversity and functioning in complex food webs. Ecology .
Iğdır Üniversitesi Fen Bilimleri Enstitüsü Dergisi-Cover
  • ISSN: 2146-0574
  • Yayın Aralığı: Yılda 4 Sayı
  • Başlangıç: 2011
  • Yayıncı: -