Çevresel Koşulların Termofilik Geobacillus kaustophilus’da Biyofilm Oluşumu Üzerinde Etkisi

Bacilluslar farklı çevrelerde yaygın olarak bulunan ve spor oluşturan mikroorganizmalardır. Bu mikroorganizmaların gıda endüstrisi, ısıtma ve arıtma sistemleri gibi pek çok alanda önemli kontaminant oldukları ve bu sistemler içinde biyofilm tabakaları oluşturdukları bilinmektedir. Bu bakterilerin büyük çoğunluğu hem gıda sektöründe önemli indikatörler olmaları, hem de pek çok endüstriyel sistemde enerji kaybına sebep olduklarından dolayı oluşturdukları biyofilm yapılarıyla mücadele son derece önem taşımaktadır. Bu çalışmada termofilik bir mikroorganizma olan Geobacillus kaustophilus’un polistiren yüzey üzerinde biyofilm oluşumuna çeşitli çevresel faktörlerin etkisi araştırılmıştır. Bu bakteri polistiren yüzey üzerinde biyofilm oluşturarak en iyi tutunmayı 168. saatte gerçekleştirmiştir. Optimum biyofilm oluşumu için gerekli sıcaklık maksimum büyümenin gerçekleştiği 55 °C olarak tespit edilmiştir. En yüksek biyofilm oluşumu %5 glikoz ve %3 NaCl’ün ayrı ayrı varlığında gözlenirken, şeker ve tuzun birlikte en etkili konsantrasyonları sırasıyla %3 ve %1.5 olarak belirlenmiştir. %5 glukoz ve %3 NaCl oranında ise biyofilm oluşumu inhibe olmuştur. Isı şoku ve UV uygulanan hücrelerde ise tutunma gözlenmemiştir. SDS ve lizozim gibi hücre duvarını denatüre edici ajanların varlığı vejetatif hücrelerde biyofilm oluşumunu azaltmış/engellerken lizozim muamelesinin SDS’e oranla biyofilm oluşumunda daha etkili olduğu saptanmıştır.

Effect of Environmental Conditions on Biofilm Formation in Thermophilic Geobacillus kaustophilus

Bacillus are spore-forming microorganisms that are broadly found in many environments. It is known that these microorganisms are important contaminants of many systems such as the food industry, heating systems, treatment systems and they form biofilm layers in these areas. Since most of these bacteria are important indicators in the food industry and cause energy loss in many industrial systems, it is extremely important to combat the biofilm structures they form. In this study, the effect of various environmental factors on the biofilm formation of Geobacillus kaustophilus (Gk) a thermophilic microorganism, on the polystyrene surface was investigated. Gk formed a biofilm on the polystyrene surface and the best adhesion was obtained at 168 hours. The temperature required for optimum biofilm formation was determined as 55 °C, where optimum growth occurred. While the highest biofilm formation was observed in the presence of 5% glucose and 3% NaCl separately, the most effective concentrations of sugar and salt together were determined as 3% and 1,5%, respectively. Biofilm formation was inhibited in the combination of 5% glucose and 3% NaCl. Presence of cell wall denaturing agents such as SDS and lysozyme reduced/prevented biofilm formation in vegetative cells and lysozyme treatment was found to be more effective than SDS in biofilm formation.

___

  • Bezek, K., Nipič, D., Torkar, K. G., Oder, M., Dražić, G., Abram, A., Žibert J., Raspor P., Bohinc, K. (2019). Biofouling of stainless steel surfaces by four common pathogens: the effects of glucose concentration, temperature and surface roughness. Biofouling, 1–11. https://doi.org/10.1080/08927014.2019.1575959.
  • Bose S., Khodke M., Basak S., Mallick S.K. (2009). Detection of biofilm producing staphylococci: Need of the hour. J Clin Diagn Res., 3:6 (1915–20).
  • Carrascosa, C., Raheem, D., Ramos, F., Saraiva, A., Raposo, A. (2021), Microbial biofilms in the food ındustry-A comprehensive review. Int J Environ Res Public Health, 18(4), 2014. https://doi.org/10.3390/ijerph18042014.
  • Donlan, R.M. (2002). Biofilms: microbial life on surfaces. Emerg Infect Dis., 8(881–890). https://doi.org/ 10.3201/eid0809.020063.
  • Elhariry, H.M. (2008). Biofilm formation by endospore-forming bacilli on plastic surface under some food-related and environmental stress conditions. Global Journal of Biotechnology and Biochemistry, 3(69-78).
  • Garrett, T.R., Bhakoo, M., Zhang, Z. (2008). Bacterial adhesion and biofilms on surfaces. Progress in Natural Science, 18 (1049–1056) https://doi.org/10.1016/j.pnsc.2008.04.001.
  • Harrison, J.J., Turner, R.J. & Ceri, H. (2005) High-throughput metal susceptibility testing of microbial biofilms. BMC Microbiol., 5 (53). https://doi.org/10.1186/1471-2180-5-53.
  • Hukić, M., Seljmo, D., Ramovic, A., Ibrišimović, M.A., Dogan, S., Hukic, J., Bojic, E.F. (2018) The effect of lysozyme on reducing biofilms by Staphylococcus aureus, Pseudomonas aeruginosa, and Gardnerella vaginalis: An In Vitro Examination. Microb Drug Resist., 24 (353–358). https://doi.org/10.1089/mdr.2016.0303.
  • Iliadis, I., Daskalopoulou, A., Simões, M., Giaouris, E. (2018). Integrated combined effects of temperature, pH and sodium chloride concentration on biofilm formation by Salmonella enterica ser. Enteritidis and Typhimurium under low nutrient food-related conditions. Food Research International, 107 (10–18). https://doi.org/10.1016/j.foodres.2018.02.015.
  • Kumar M, Flint S, Palmer J, Chanapha S, Hall C. (2021). Influence of the incubation temperature and total dissolved solids concentration on the biofilm and spore formation of dairy isolates of Geobacillus stearothermophilus. Appl Environ Microbiol., 15;87(8):e02311-20. https://doi.org/10.1128/AEM.02311-20.
  • Li, F,, Xiong, X.S., Yang, Y.Y., Wang, J.J., Wang, M.M., Tang. J.W., Liu, Q.H., Wang L, Gu, B. (2021). Effects of NaCl concentrations on growth patterns, phenotypes associated with virulence, and energy metabolism in Escherichia coli BW25113. Front Microbiol., 16;12:705326. https://doi.org/10.3389/fmicb.2021.705326. Lim, Y., Jan, M., Luong, T.T., Lee, C.Y. (2004). Control of glucose- and NaCl-induced biofilm formation by rbf in Staphylococcus aureus. J Bacteriol., 186 (722–729). https://doi.org/10.1128/jb.186.3.722-729.2004.
  • López, D., Vlamakis, H., Kolter, R. (2010). Biofilms. Cold Spring Harb Perspect Biol. 2(7):a000398. https://doi: 10.1101/cshperspect.a000398.
  • Maunders, E. and Welch, M. (2017) Matrix exopolysaccharides; the sticky side of biofilm formation. FEMS Microbiol Lett., 364 (120). https://doi.org/10.1093/femsle/fnx120.
  • Moraes, J.O., Cruz, E.A., Souza, E.G.F., Oliveira, T.C.M., Alvarenga, V.O., Peña, W.E.L., Sant’Ana, A.S., Magnani, M., (2018). Predicting adhesion and biofilm formation boundaries on stainless steel surfaces by five Salmonella enterica strains belonging to different serovars as a function of pH, temperature and NaCl concentration. Int J Food Microbiol., 10:281(90–100). https://doi.org/10.1016/j.ıjfoodmıcro.2018.05.011.
  • Muhammad, M.H., Idris, A.L., Fan, X., Guo, Y., Yu, Y., Jin, X., Qiu, J., Guan, X., Huang, T. (2020) Beyond risk: Bacterial biofilms and their regulating approaches. Front Microbiol., 11 (928). https://doi.org/10.3389/fmıcb.2020.00928/bıbtex.
  • Pan, Y., Breidt, F., Gorski, L. (2010). Synergistic effects of sodium chloride, glucose, and temperature on biofilm formation by Listeria monocytogenes Serotype 1/2a and 4b strains. Appl Environ Microbiol., 76 (1433–1441). https://doi.org/10.1128/aem.02185-09.
  • Rath, H., Stumpp, S.N., Stiesch, M. (2017). Development of a flow chamber system for the reproducible in vitro analysis of biofilm formation on implant materials, PLoS One. 12 e0172095. https://doi.org/ 10.1371/journal.pone.0172095.
  • Richter, A.M., Konra K., Oslan A.M., Broo E., Oastle C., Vestb L.K., Goslin R.J., Ness L.L, Arvand, M. (2023). Evaluation of biofilm cultivation models fore testing of disinfectants against Salmonella typhimurium biofilms. Microorganisms, 11, (761). https://doi.org/10.3390/mıcroorganısms11030761.
  • Salgar-Chaparro, S. J., Lepkova, K., Pojtanabuntoeng, T., Darwin, A., & Machuca, L. L. (2020). Nutrient level determines biofilm characteristics and the subsequent impact on microbial corrosion and biocide effectiveness. Applied and Environmental Microbiology. https://doi.org/10.1128/aem.02885-19.
  • Satpathy, S., Sen, S.K. Pattanaik, S., Raut, S. (2016). Review on bacterial biofilm: An universal cause of contamination. Biocatal Agric Biotechnol., 7 (56–66). https://doi.org/10. 1016/j.bcab.2016.05.002.
  • Sauer, K., Stoodley, P., Goeres, D.M., Hall-Stoodley, L., Burmølle, M., Stewart, P.S. Bjarnsholt, T. (2022). The biofilm life cycle: expanding the conceptual model of biofilm formation. Nature Reviews Microbiology, 20: 10 (608–620). https://doi.org/10.1038/s41579-022-00767-0 Rode, T.M., Langsrud, S., Holck, A., Møretrø, T. (2007). Different patterns of biofilm formation in Staphylococcus aureus under food-related stress conditions. Int J Food Microbiol., 116 (372–383). https://doi.org/10.1016/j.ıjfoodmıcro.2007.02.017.
  • Vu, B., Chen, M., Crawford, R.J., Ivanova, E.P. (2009) Bacterial extracellular polysaccharides involved in biofilm formation. Molecules, 14 (2535–2554). https://doi.org/10.3390/molecules14072535.
  • Waldrop, R., McLare A., Calar F., McLemor R. (2014). Biofilm growth has a threshold response to glucose in vitro. Clin Orthop Relat Res., 472 (3305). https://doi.org/10.1007/s11999-014-3538-5.
  • Wang N., Ji Y., H G., Yua L., (2021) Development of multi-species biofilm formed by thermophilic bacteria on stainless steel immerged in skimmed milk. Food Research International, 150 (110754). https://doi.org/10.1016/j.foodres.2021.110754.
  • Wang, C., Li, M., Dong, D., Wang, J., Ren, J., Otto, M., Gao, Q. (2007). Role of ClpP in biofilm formation and virulence of Staphylococcus epidermidis. Microbes Infect., 9 (1376–1383). https://doi.org/10.1016/j.mıcınf.2007.06.012.
  • Xu, H., Zou, Y., Lee, H.Y., Ahn, J. (2010). Effect of NaCl on the biofilm formation by foodborne pathogens. J Food Sci., 75 ( M580–M585). https://doi.org/10.1111/j.1750-3841.2010.01865.x.