Safran (Crocus sativus L.) Bitkisinde Biyoteknolojik Çalışmalar

Iridaceae familyasına ait olan Crocus sativus L. triploid (2n=3x=24) bir bitkidir ve korm (corm)’larıaracılığı ile vejetatif olarak çoğaltılmaktadır. Crocus sativus çiçeklerinin stigmaları bitkinin ekonomik olarak enönemli kısmını oluşturmakta ve hem kuru stigmalarından elde edilen baharat hem de bitkinin adı safran olarakisimlendirilmektedir. Safran bitkisi kokusunu safranal, tadını pikrokrosin, rengini ise krosin adı verilen sekonderbileşiklerinden almakta olup bu metabolitleri stigmasında bulundurmaktadır. Safranın ekonomik değeri, boya, gıdave kozmetik gibi çeşitli endüstri dallarında çok geniş kullanım alanının yanı sıra sekonder metabolitlerinin sahipolduğu anti-kanser özelliğinden ileri gelmektedir. Kormların çoğalma oranının yüksek olmaması ve patojenlerlebulaşık olma durumu safran üretimini kısıtlamakta ve kaliteyi düşürmektedir. Bu olumsuzluklar ve yetiştirmezorlukları nedeniyle yıllık safran üretiminin giderek azalması ve safran ihtiyacının karşılanamaması, araştırmalarısafranın in vitro çoğaltımı üzerine yoğunlaştırmıştır. İn vitro kültür gibi biyoteknolojik yöntemler; safran bitkisi içinkısa sürede büyük miktarlarda çoğaltım materyali elde etmeyi sağlamakta ayrıca, krosin, pikrokrosin ve safranalgibi ticari öneme sahip kimyasal maddelerin üretimi için de imkan sunmaktadır. Bu makalede, safranın başlıcasekonder metabolitleri ve in vitro kültürü üzerine yapılan bazı çalışmalar derlenmiştir.

Biotechnological Studies in Saffron (Crocus sativus L.) Plant

A member of Iridaceae family, Crocus sativus L. is a triploid (2n=3x=24) plant and is reproducedvegetatively via its corms. Stigmas of Crocus sativus flowers constitutes economically the most important part ofthe plant and both the spice obtained from dry stigmas and the name of the plant is termed as saffron. Saffron getsodor from safranal, taste from picrocrocin, colour from crocin secondary metabolites and keeps these metabolitesin its stigma. Economic value of saffron arises from extensive areas of usage in various industry branches such asdye, food and cosmetics as well as anti-cancer properties of secondary metabolites. Not having high reproductionrate of corms and infection with pathogens situation limit the production and reduces the quality of saffron. Becauseof these negativities and diffculties of growing, decrease of annual saffron production gradually and dissatisfactionof saffron need is concentrated the searches on in vitro production of saffron. Biotechnological methods as in vitroculture; provide for saffron plant to obtain vast amount of multiplication material in short times, also give theopportunity for production of commercially important chemicals such as crocin, picrocrocin and safranal. In thisarticle, main secondary metabolites of saffron and some studies on in vitro culture were reviewed.

___

  • Abdullaev FI, 2002. Cancer chemo preventive and tumoricidal properties of saffron (Crocus sativus L.). Experimental Biology and Medicine, 227:20-25.
  • Açıkgöz ÖA, 2010. Safran bitkisinin (Crocus sativus L.) yetiştirilmesi, kalitesi ve ticari önemi.Bartın Üniversitesi Fen Bilimleri Enstitüsü,Yüksek Lisans Tezi, 111s.
  • Ahmad M, Zaffar G, Habib M, Arshid A, Dar NA, Dar ZA. 2014. Saffron (Crocus sativus L.) in the light of biotechnological approaches: A review. Scientific Research and Essays, 9 (2):2348-2353.
  • Aliakbarzadeh G, Sereshti H, Parastar H, 2016. Pattern recognition analysis of chromatographic fingerprints of Crocus sativus L. secondary metabolites towards source identification and quality control.Analytical and Bioanalytical Chemistry, 408(12): 3295-3307.
  • Bhagyalakshmi N, 1999. Factors influencing direct shoot regeneration from ovary explants of saffron. Plant Cell, Tissue and Organ Culture, 58: 205-211.
  • Blazquez S, Piqueras A, Serna M, Casa JL, Fernandez JA, 2004. Somatic embryogenesis in saffron (Crocus sativus L.): optimisation through temporary immersion and polyamine metabolism. Acta Horticulturae, 650:259-276.
  • Blazquez S, Olmos E, Hernandez JA, Fernandez-Garcia N, Fernandez JA, 2009. Somatic embryogenesis in saffron (Crocus sativus L.). Histological differentiation and implication of some components of the anti-oxidant enzymatic system. Plant Cell, Tissue and Organ Culture, 97:49-57.
  • Castellar MR, Iborra JL, 1997. Callus induction from explants of Crocus sativus. Journal of Plant Biochemistry and Biotechnology, 6: 97-100.
  • Chaloushi B, Zarghami R, Abd-Mishani C, Omidi M, Agayev YM, Pakdaman Sardood B, 2007. Effects of different hormonal treatments on the callus production and plantlet regeneration in saffron (Crocus sativus L.). Pakistan Journal of Biological Sciences, 10: 1625-1631.
  • Chen S, Wang X, Zhao B, Yuan X, Wang Y, 2003. Production of crocin using Crocus sativus callus by two-stage culture system. Biotechnology Letters, 25:1235-1238.
  • Chen S, Zhao B, Wang X, Yuan X, Wang Y, 2004. Promotion of the growth of Crocus sativus cells and the production of crocin by rare elements. Biotechnology Letters, 26:27-30.
  • Chen S, Zhao S, Wang X, Zhang L, Jiang E, Gu Y, Shangguan JA, Zhao H, Lv T, Yu Z, 2015. Crocin inhitibts cell proliferation and enhances cisplatin and pemetrexed chemosensitivity in lung cancer cells. Translational Lung Cancer Research, 4 (6): 775-783.
  • Darvishi E, Zarghami R, Mishani CA, Omidi M, Sarkhosh A, 2006. In vitro production of pathogen free plantlets via meristem culture in saffron (Crocus sativus L.). Biotechnology, 5:292-295.
  • Devi K, Sharma M, Singh M, Ahuja PS, 2011. In vitro cormlet production and growth evaluation under greenhouse conditions in saffron (Crocus sativus L.) – A commercially important crop. Engineering in Life Sciences, 11 (2):189-194.
  • Devi K, Sharma M, Ahuja PS, 2014. Direct somatic embryogenesis with high frequency plantlet regeneration and successive cormlet production in saffron (Crocus sativus L.). South African Journal of Botany, 93:207-216.
  • Ebrahimzadeh H, Radjabian T, Karamian R, 2000a. In vitro production of floral buds and stigma-like structures on floral organs of Crocus sativus L. Pakistan Journal of Botany, 32: 141-150.
  • Ebrahimzadeh H, Karamian R, Noori-Daloii MR, 2000b. Somatic embryogenesis and regeneration of plantlet in saffron, Crocus sativus L. Journal of Sciences, Islamic Rebuplic of Iran, 11:169-173.
  • Escribano J, Alonso LG, Prados CM, Fernandez AJ, 1995. Crocin, safranal and picrocrocin from saffron (Crocus sativus L.) inhibit the growth of human cancer cells in vitro. Cancer Letters, 100:23-90.
  • Fakhrai F, Evans PK, 1990. Morphogenetical potential of cultured floral explants of Crocus sativus L. for the in vitro production of saffron. Journal of Experimental Botany, 41:47-52.
  • Gamborg OL, Miller RA, Ojima K, 1968. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research, 50:151-158.
  • Gantait S, Vahedi M, 2015. In vitro regeneration of high value spice Crocus sativus L.: A concise appraisal. Journal of Applied Research on Medicinal and Aromatic Plants, 2:124-133.
  • George PS, Visvanath S, Ravishankar GA, Venkataraman LV, 1992. Tissue culture of saffron (Crocus sativus L.): somatic embryogenesis and shoot regeneration. Food biotechnology, 6:217-223.
  • Ilahi I, Jabeen M, Firdous N, 1987. Morphogenesis with saffron tissue cultures. Journal of Plant Physiology, 128: 227-232.
  • Jun Z, Xiaobin C, Fang C, 2007. Factors influencing in vitro flowering from styles of saffron. Acta Horticulturae, 739: 313-320.
  • Karamian R, 2004. Plantlet regeneration via somatic embryogenesis in four species of Crocus. Acta Horticulturae, 650: 253-259.
  • Karaoğlu C, Çöçü S, İpek A, Parmaksız İ, Uranbey S, Sarıhan E, Arslan N, Kaya MD, Sancak C, Özcan S, Gürbüz B, Mirici S, Er C, Khawar KM, 2007. In vitro micropropagation of saffron. Acta Horticulturae (ISHS), 739:223-227.
  • Koyama A, Ohmori Y, Fujioka N, Miyagawa H, Yamasaki K, Kohda H, 1988. Formation of stigma-like structures and pigments in cultured tissues of Crocus sativus. Planta Medica, 54: 375-376.
  • Linsmaier EM, Skoog F, 1965. Organic growth factor requirements of tobacco tissue cultures. Physiologia Plantarum, 8:100-127.
  • Loskutov AV, Beninger CW, Ball TM, Hosfield GL, Nair M, Sink AC, 1999. Optimization of in vitro conditions for stigma-like-structure production from half-ovary explants of Crocus sativus L. In vitro Cellular & Developmental Biology, 35: 200-205.
  • Lu WL, Tong XR, Zhang Q, Gao WW, 1992. Study on in vitro regeneration of style-stigma-like structure in Crocus sativus L. Acta Botanica Sinica, 34: 251-256.
  • Majourhat K, Martinez-Gomez P, Piqueras A, Fernandez JA, 2007. Enhanced plantlet regeneration from cultured meristems in sprouting buds of saffron corms. Acta Horticulturae, 739: 275-278.
  • Milyaeva EL, Azizbekova NS, Komarova EN, Akhundova DD, 1995. In vitro formation of regenerant corms of saffron crocus (Crocus sativus L.). Russian Journal of Plant Physiology, 42:112-119.
  • Mir JI, Ahmed N, Wani SH, Rashid R, Mir H, Sheikh MA, 2010. In vitro development of microcorms and stigma like structures in saffron (Crocus sativus L.). Physiology and Molecular Biology, 16: 369-373.
  • Murashige T, Skoog F, 1962. A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiologia Plantarum, 15:473-495.
  • Namin MH, Ebrahimzadeh H, Ghareyazie B, Radjabian T, Namin HH, 2010. Initiation and origin of stigma-like structures (SLS) on ovary and style explants of saffron in tissue culture. Acta Biologica Cracoviensia Series Botanica, 52: 55-60.
  • Parray JA, Kamili AN, Hamid R, Husaini AM, 2012. In vitro cormlet production of saffron (Crocus sativus L. Kashmirianus) and their flowering response under greenhouse. GM Crops and Food: Biotechnology in Agriculture and the Food Chain, 3(4):289-295.
  • Piqueras A, Han BH, Escribano J, Rubio C, Hellin E, Fernandez JA, 1999. Development of cormogenic nodules and microcorms by tissue culture, a new tool for the multiplication and genetic improvement of saffron. Agronomie, 19:603-610.
  • Plessner O, Ziv M, Negbi M, 1990. In vitro corm production in the saffron crocus (Crocus sativus L.). Plant Cell, Tissue and Organ Culture, 20: 89-94.
  • Raja W, Zaffer G, Wani SA, 2007. In vitro microcorm formation in saffron (Crocus sativus L.). Acta Horticulturae, 739:291-296.
  • Renau-Morata B, Moya L, Nebauer SG, Segui-Simarro JM, Parra-Vega V, Gomez MD, Molina RV, 2013. The use of corms produced under storage at low temperatures as a source of explants for the in vitro propagation of saffron reduces contamination levels and increases multiplication rates. Industrial Crops and Products, 46: 97-104.
  • Salwee Y, Nehvi FA, 2014. In vitro microcorm formation in saffron (Crocus sativus L.). Journal of Cell& Tissue Research, 14:4463-4470.
  • Sano K, Himeno H, 1987. In vitro proliferation of saffron (Crocus sativus L.) stigma. Plant Cell, Tissue and Organ Culture, 11:159-166.
  • Sarma KS, Maesato K, Hara T, Sonoda Y, 1990. In vitro production of stigma-like structures from stigma explants of Crocus sativus L. Journal of Experimental Botany, 41:745-748.
  • Sarma KS, Sharada K, Maesato K, Hara T, Sonoda Y, 1991. Chemical and sensory analysis of saffron produced through tissue culturesof Crocus sativus. Plant Cell, Tissue and Organ Culture, 26:11-16.
  • Shahabzadeh Z, Heidari B, Dadkhodaie A, 2013. Regenerating salt tolerant saffron (Crocus sativus) using tissue culture with increased pharmaceutical ingredients. Journal of Crop Science and Biotechnology,16:209-217.
  • Sharifi G, Ebrahimzadeh H, Ghareyazie B, Karimi M, 2010. Globular embryo-like structures and highly efficient thidiazuron-induced multiple shoot formation in saffron (Crocus sativus L.). In vitro Cellular & Developmental Biology-Plant, 46: 274-280.
  • Sharifi G, Ebrahimzadeh H, Ghareyazie B, Gharechahi J, Vatankhah E, 2012. Identification of differentially accumulated proteins associated with embryogenic and non-embryogenic calli in saffron (Crocus sativus L.). Proteome Science, 10:3.
  • Sharrna KD, Singh BM, Sharma TR, Rathour R, Sharma R, Goel S, 2008. In vitro cormlet development in Crocus sativus. Biologia Plantarum, 52:709-712.
  • Sharma KD, Piqueras A, 2010. Saffron (Crocus sativus L.) Tissue Culture: Micropropagation and Secondary Metabolite Production. Functional Plant Science and Biotechnology, 4 (Special Issue 2):15-24.
  • Sheibani M, Nemati SH, Davarinejad GH, Azghandi AV, Habashi AA, 2007. Induction of somatic embryogenesis in saffron using thidiazuron (TDZ). Acta Horticulturae, 739: 259-268.
  • Simona L, Cerasela P, Florina F, Lazar A, Giancarla V, Danci M, Maria B, 2013. In vitro regeneration of Crocus sativus L. The Journal of Horticultural Science and Biotechnology, 17: 244-247.
  • Ünaldı EÜ, 2007. Tehdit ve tehlike altında bir kültür bitkisi:safran (Crocus sativus L.).Fırat Üniversitesi Sosyal Bilimler Dergisi, 4: 53-67.
  • Vatankhah E, Niknam V, Ebrahimzadeh H, 2010. Activity of antioxidant enzyme during in vitro organogenesis in Crocus sativus.Biologia Plantarum,54:509-514.
  • Vahedi M, Kalantari S, Salami SA, 2014. Factors affecting callus induction and organogenesis in saffron (Crocus sativus L.). Plant Tissue Culture abd Biotechnology, 24:1-9.
  • White PR, 1964. The cultivation of animal and plant cells. Soil Science, 97:74.
  • Zaffar G, Ahmad M, Shahida I, Razvi SM, Habib M, Ahmad A, 2014. Effect of paclobutrazol and sucrose on in vitro corm formation in saffron (Crocus sativus). Journal of Cell and Tissue Research, 14.1:4069-4072.
  • Zeng Y, Yan F, Tang L, Chen F, 2003. Increased crocin production and induction frequency of stigma-like-structurefrom floral organs of Crocus sativus by precursor feeding. Plant Cell, Tissue and Organ Culture, 72: 185-191.
  • Zeybek E, Önde S, Kaya Z, 2012. Improved in vitro micropropagation method with adventitious corms and roots for endangered saffron. Central European Journal of Biology, 7.1:138-145.
  • Zhao J, Chen F, Yan F, Tang L, Xu Y, 2001. In vitro regeneration of style-stigma-like structure from stamens of Crocus sativus. Acta Botanica Sinica, 43: 475-479.