Porfrin İnce Filmlerin Organik Buhar ile Etkileşim Mekanizmasının Belirlenmesi

Bu çalışmada Langmuir-Schaefer (LS) ince flm üretim tekniği ile 5,10,15,20-tetrakis[3,4-bis(2-ethylhexyloxy)phenyl]-21H,23H-porphine (EHO) porfrin moleküllü ve poly(methyl methacrylate) (PMMA)molekülü kullanılarak çeşitli tabaka sayılarında ince flmler üretildi. Üretilen ince flmlerdeki duyarlı bölgeyi EHOmolekülü oluştururken, PMMA tabakası bir çeşit bariyer olarak kullanıldı. PMMA molekülü polimer yapısındandolayı ince flm olarak transfer edildiğinde birbirine çok yakın bir düzende flm oluşturmaktadır. Dolayısıyla PMMAtabakasının gaz moleküllerinin EHO tabakalarına ulaşmasını engelleyen bir bariyer özelliği göstermesi beklenir.Beklenen bu bariyer etkisini incelemek amacıyla asetik asit buharı kullanılarak ince flm buhar etkileşimleri UVgörünür spektroskopisiyle kaydedildi. EHO ince flmler çok tabakalı üretilerek PMMA tabakasının konumunabağlı olarak sensör tepkileri ölçüldü. Bu sayede ince flm ile gaz molekülleri arasında gerçekleştiği düşünülenfarklı etkileşim aşamaları aydınlatılmaya çalışıldı. PMMA tabakasının farklı konumlarının tepki süresini, hızınıve şiddetini etkilediği görüldü. Teorik olarak varsayıldığı gibi gaz moleküllerinin öncelikle ince flm yüzeyi ileetkileştikleri daha sonra flmin içerisine girerek difüzyon etkileşiminin gerçekleştiği deneysel sonuçlar ile kanıtlandı

Determination of Interaction Mechanism between Porphyrin Thin Film and Organic Vapor

Langmuir-Schaefer (LS) flms of a free base porphyrin 5,10,15,20-tetrakis[3,4-bis(2-ethylhexyloxy)phenyl]-21H,23H-porphine (EHO) are used in conjunction with a poly(methyl methacrylate) PMMA moleculedeposited as a various layer confguration thin flms. EHO is the active sensing layer and PMMA is a barrier layerfor gas molecules. PMMA molecules stick each other when they transferred on a solid substrate so they can stopvapor molecules before they reach to EHO layers. In order to investigate the gas sensing behaviors acetic acid waschosen for analyte vapor and UV-visible spectrometer was used for sensing system. The layer order of multilayeredLS flms was varied in order to investigate the sensing characteristics and vapor dynamics. It was observed that theplace of PMMA layer effects the response time, speed and intensity. As it is expected from the theoretical studies,the interaction between thin flm and vapor molecules starts from the surface of thin flm and then vapor moleculesstarts to penetrate into flm structure. The experimental results obtained from this study prove this dynamic diffusioneffect between thin flm and vapor molecules. Thus the interaction kinetics between thin flm molecules and vapormolecules were demonstrated using the barrier layer affect.

___

  • Silva LF, Mastelaro VR, Catto AC, Escanhoela CA, Bernardini S, Zilio SC, Longo E, Aguir K, 2015. Ozone and nitrogen dioxide gas sensor based on a nanostructured SrTi0.85Fe0.15O3 thin film. J. Alloys and Compounds 638: 374-379.
  • Özmen M, Özbek Z, Buyukcelebi S, Bayrakci M, Ertul S, Ersoz M, Capan R, 2014. Fabrication of Langmuir–Blodgett thin films of calix[4]arenes and their gas sensing properties: Investigation of upper rim para substituent effect. Sens. Actuators B: Chem. 190: 502-511.
  • Kılınc N, Ozturk S, Atilla D, Gurek A, Ahsen V, Ozturk ZZ, 2012. Electrical and NO2 sensing properties of liquid crystalline phthalocyanine thin films. Sens. Actuators B 173: 203-210.
  • Banimuslem H, Hassan A, Basova T, Esenpınar AA, Tuncel S, Durmus M, Gürek AG, Ahsen V, 2015. Dye-modified carbon nanotubes for the optical detection of amines vapors. Sens. Actuators B 207: 224-234.
  • Wang B, Zhang L, Li B, Li Y, Shi Y, Shi T, 2014. Synthesis, characterization, and oxygen sensing properties of functionalized mesoporous silica SBA-15 and MCM-41 with a Pt(II)–porphyrin complex. Sens. Actuators B: Chem. 190: 93-100.
  • Hyodo T, Ishibashi C, Matsuo K, Kaneyasu K, Yanagi H, Shimizu Y, 2012. CO and CO2 sensing properties of electrochemical gas sensors using an anion-conducting polymer as an electrolyte. Electrochimica Acta 82: 19-25.
  • Koshets IA, Kazantseva ZI, Shirshov YM, Cherenok SA, Kalchenko VI, 2005. Calixarene films as sensitive coatings for QCM-based gas sensors. Sens. Actuators B 106: 177–181.
  • Giancane G, Valli L, 2012. State of art in porphyrin Langmuir–Blodgett films as chemical sensors. Adv. Colloid Interface 171-172: 17-35.
  • Manera MG, Vila EF, Cebollada A, Martín JMG, Martín AG, Giancane G, Valli, Rella R, 2012. Ethane-Bridged Zn Porphyrins Dimers in Langmuir-Schafer Thin Films: Spectroscopic, Morphologic, and Magneto-Optical Surface Plasmon Resonance Characterization. J. Phys. Chem. C 116: 10734-10742.
  • Spadavecchia J, Ciccarella G, Siciliano P, Capone S, Rella R, 2004. Spin-coated thin films of metal porphyrin–phthalocyanine blend for an optochemical sensor of alcohol vapors. Sens. Actuators B: Chem. 100: 88-93.
  • He M, Peng H, Wang G, Chang X, Miao R, Wang W, Fang Y, 2016. Fabrication of a new fluorescent film and its superior sensing performance to N-methamphetamine in vapor phase. Sens. Actuators B 227: 255–262.
  • Dunbar ADF, Richardson TH, McNaughton AJ, Cadby A, Hutchinson J, Hunter CA, 2006. Optical changes induced in Zn porphyrin solutions and LB films by exposure to amines. J. Porphyrins Phthalocyanines 10: 978-985.
  • Richardson TH, Dooling CM, Jones LT, Brook RA, 2005. Development and optimization of porphyrin gas sensing LB films. Adv. Colloid Interface 116: 81-96.
  • Richardson TH, Dooling CM, Worsfold O, Jones LT, Kato K, Shinbo K, Kaneko F, Tregonning R, Vysotsky MO, Hunter CA, 2002. Gas sensing properties of porphyrin assemblies prepared using ultra-fast LB deposition. Colloid Surf. A 198-200: 843-857.
  • Sandrino B, Clemente C, Oliveira T, Ribeiro F, Pavinatto F, Mazzetto S, Neto P, Correia A, Pessoa C, Wohnrath K, 2013. Amphiphilic porphyrin-cardanol derivatives in Langmuir and Langmuir–Blodgett films applied for sensing. Colloids Surf. A: Physicochem. Eng. Asp. 425: 68-75.
  • Dooling CM, Worsfold O, Richardson TH, Tregonning R, Vysotsky MO, Hunter CA, Kato K, Shinbo K, Kaneko F, 2001. Fast, reversible optical sensing of NO2 using 5,10,15,20-tetrakis[3,4-bis(2-ethylhexyloxy)phenyl]-21H,23H-porphine assemblies. J. Mater. Chem. 11: 392-398.
  • Evyapan M, Dunbar ADF, 2015. Improving the selectivity of a free base tetraphenylporphyrin based gas sensor for NO2 and carboxylic acid vapors. Sens. Actuators B: Chem. 206: 74-83.
  • Evyapan M, Dunbar ADF, 2016. Controlling surface adsorption to enhance the selectivity of porphyrin based gas sensors. Applied Surface Science 362: 191–201.
  • Dunbar ADF, Richardson TH, McNaughton AJ, Hutchinson J, Hunter CA, 2006. Investigation of Free Base, Mg, Sn, and Zn Substituted Porphyrin LB Films as Gas Sensors for Organic Analytes. J. Phys. Chem. B110: 16646-16651.
  • Dunbar A, Richardson TH, McNaughton AJ, Barford W, Hutchinson J, Hunter CA, 2006. Understanding the interactions of porphryin LB films with NO2. Colloids Surf. A: Physicochem. Eng. Asp. 284-285: 339-344.