The Liquid Rocket Engine Design System Using a New Thermo-Gas-Dynamic Calculation Method

As is well known, the energy specifications of a liquid rocket engine (LRE) determine the structural scheme, geometric, mass, thrust, flight specifications and the efficiency of the rocket. Therefore, in the calculation of the LRE energy characteristics special attention is paid to thermo-chemical modeling of processes and the thermodynamic calculation of the engine chamber. Analysis of researches show that the incorrect account of the nature of chemical reactions along the length of the LRE chamber lead to errors in the assessment of the specific impulse and in the formation of the engine geometry. Consequently, the problem of correctly simulating of the flow parameters distribution over the chamber volume and taking them into account for nozzle profiling arises. With known length (L=xmax) and diameters of the LRE chamber main sections is possible to form the distribution of the number of moles of components, heat capacity and isentropic index (N~f(x), c~g(x) and γ~h(x)) of the gas mixture. Thus, has been developed a new methodology for the LRE design, which is based on the thermodynamic calculation equations, the method of characteristics and the sigmoidal function of the flow velocity distribution. This system provides appropriate geometry forming of the chamber and improving of the LRE energy parameters at the preliminary design stage.

Yeni Termo-Gaz Dinamik Hesaplama Yöntemi Kullanan SYRM Tasarım Sistemi

Bilindiği gibi, sıvı yakıtlı roket motorunun (SYRM) enerji özellikleri roketin tasarım şemasını, geometrik, kütle, itki, uçuş özelliklerini ve verimini belirler. Bu nedenle, SYRM'nin enerji özelliklerinin hesaplanmasında, süreçlerin termokimyasal modellenmesine ve motor odasının termodinamik hesaplanmasına özellikle dikkat edilir. Bu alandaki araştırmaların analizi gösterir ki, SYRM'nin odası boyunca kimyasal reaksiyonların doğasının doğru dikkate alınmaması özgül impulsun değerlendirmesinde ve motor geometrisinin oluşumunda hatalara neden olur. Sonuç olarak, akış parametrelerinin SYRM odasının (yanma odası ve nozul) hacmine göre dağılımının doğru şekilde simüle edilmesi ve bunların nozul profillemesi için dikkate alınması problemi ortaya çıkmaktadır. Eğer SYRM odasının uzunluğunun (L=xmax) ve ana bölümlerinin çaplarının değerleri biliniyorsa gaz karışımının bileşenlerinin mol sayısının, özgül ısının ve izentropik katsayının (N~f(x), c~g(x) ve γ~h(x)) dağılımını şekillendirmek mümkündür. Belirtilenler dikkate alınarak SYRM odasının tasarımı için termodinamik hesaplama denklemlerine, karakteristikler yöntemine ve akış hızının dağılımının sigmoidal fonksiyonuna dayanan yeni tasarım metodolojisi geliştirilmiştir. Bu sistem itki odasının uygun geometrisinin oluşturulmasını ve ön tasarım aşamasında SYRM'nin enerji parametrelerinin geliştirilmesini sağlar.

___

[1] A.A. Kozlov, V.N. Novikov and E.V. Solov'ev, “Power and Control Systems for Liquid Rocket Propulsion Systems,” A Textbook for High Schools, Moscow, Mashinostroenie publ., 1988.

[2] V.E. Alemasov, A.F. Dregalin and A.P. Tishin, “Theory of Rocket Engines,” A Textbook for High Schools, Ed. V.P. Glushko., Moscow, Mashinostroeniye, pp. 464, 1989.

[3] A.I. Babkin, A.A. Dorofeev, G.T. Loskutnikova, L.A. Filimonov and V.A. Chernukhin, “Calculation of Parameters and Characteristics of the RE Camera Edited by Babkin,” A.I. Moscow: MGTU, 1990.

[4] V.P. Glushko, V.E. Alemasov and others. “Thermodynamic and Thermophysical Properties of Combustion Products,” A guide in 10 volumes. Under the scientific. by the hand of V. P. Glushko”, USSR Academy of Sciences, Moscow, VINITI, Vol. 1, pp. 1971-1976.

[5] A.A. Gurtovoy, A.V. Ivanov, G.I. Skomorokhov and D.P. Shmatov, “Calculation and Design of LPRE Aggregates,” A Textbook for High Schools, Voronezh, VSTU, 2016.

[6] A.P. Vasiliev, V.M. Kudryavtsev, V.A. Kuznetsov, V.D. Kurpatenkov, A.M. Obelnitsky, V.M. Polyaev and B.Y. Poluyan,“Fundamentals of the Theory and Calculation of Liquid Rocket Engines,” Textbook. Edited by V.M. Kudryavtsev. Moscow, High School, 3rd edition, revised and enlarged, pp. 703, 1983.

[7] G.V. Belov and B.G. Trusov, “Thermodynamic Modeling of Chemically Reacting Systems,” Moscow, MSTU named after E.E. Bauman, pp. 96, 2013.

[8] N.A. Brykov, K.N. Volkov, V.N. Emelyanov and I.V. Teterina, “Flows of Ideal and Real Gases in Channels of Variable Cross Section with Unsteady Localized Energy Supply,” Journal of Computational Methods and Programming, Vol. 18, No. 1, pp. 20-40, 2017.

[9] M.R. Colonno, E. Van der Weide and J.J. Alonso, “The Optimum Vacuum Nozzle: an MDO Approach,” 46th AIAA Aerospace Sciences Meeting and Exhibit, AIAA 2008-911, Reno, Nevada, 7 - 10 January 2008.

[10] L. Fu, S. Zhang and Y. Zheng, “Design and Verification of Minimum Length Nozzles with Specific/Variable Heat Ratio Based on Method of Characteristics,” International Journal of Computational Methods, Vol. 13, No. 6, 2016.

[11] J. Kestin, “Influence of Variable Specific Heats on the High-speed Flow of Air, A.R.C. Technical Report,” C.P. No. 33 (13.176), London his majesty’s stationery office Polish University College, 1950.

[12] K.G. Kyprianidis, V. Sethi, S.O.T. Ogaji, P. Pilidis, R. Singh and A.I. Kalfas, “Thermo-Fluid Modelling for Gas Turbines-Part 1: Theoretical Foundation and Uncertainty Analysis,” GT2009-60092, Proceedings of ASME TURBO EXPO 2009, Power for Land, Sea and Air, Orlando, FL, USA, June 8-12, 2009.

[13] O. Rizkalla, W. Chinitz and J.I. Erdos, “Calculated Chemical and Vibrational Non Equilibrium Effects in Hypersonic Nozzles,” Journal of Propulsion and Power, pp.50-57, 1990.

[14] T. Zebbiche, “Stagnation Temperature Effect on the Supersonic Axisymmetric Minimum Length Nozzle Design with Application for Air,” Adv. Space Res.,Vol. 48, No. 10, pp.1656–1675, 2011.

[15] J.J. Anderson, “Modern Compressible Flow: With Historical Perspective” New York: McGraw-Hill Book Company, 1982.

[16] L.V. Gurvich and I.V. Veitz et al., “Thermodynamic Properties of Individual Substances” in 4 volumes, Eds. V.P. Glushko et al., A guide in 4 volumes, Nauka, M. 1978-1982.

[17] Yu. A. Bulygin, A.V. Kretinin, V.S. Rachuk and S.V. Faleev, “Calculation of the Thermal State of the Liquid Propellant Rocket Engine” A Textbook for High Schools, Editor V.P. Kozelkov, VSTU, Voronej, pp. 90 , 1997.

[18] P. Sh. Abdullayev and A.S. Samedov, “To the Question of Profiling of the LPRE Nozzle,” Herald of aeroenginebuilding, No.1 (2018), Zaporozh`e, Motor Sych, Ukraine, 2018.

[19] J.M. Bonnie, J. Z. Michael and G. Sanford, “Coefficients for Calculating Thermodynamic Properties of Individual Species,” Glenn Research Center, NASA TP-2002-211556, NASA Glenn Cleveland, Ohio, USA. 2002.

[20] B.J. Cantwell, “Aircraft and Rocket Propulsion,” AA283 course, Stanford University, Stanford California, 94305, https://web.stanford.edu/~cantwell/AA283_Course_Mat erial/AA283_Course_Notes/, [Accessed: Jan. 6, 2019].

[21] S. Gordon and B. McBride, “Computer Program for Complex Chemical Equilibrium Compositions and Applications,” Vol. 1. Analysis, NASA RP 1311, 1994.

[22] P. Hill and C. Peterson, “Mechanics and Thermodynamics of Propulsion,” Addison-Wesley Publishing Company, 2nd Edition, 1992.

[23] A. Paşayev, P. Abdullayev and A. Samedov, “Sıvı Yakıtlı Roket Motorunun Itme Odasının Geliştirilmiş Tasarım Yöntemi,” SAVTEK 2018, 9.Savunma Teknolojileri Kongresi, ODTÜ, Ankara, 27- 29 Haziran, 2018.

[24] N. Abdulla, “Implementation of Variable Specific Heat Ratio in Liquid Rocket Nozzle Design Using Method of Characteristics,” Proceedings of the IV International Scientific and Practical Conference “Creative Potential of Young People in the Solving of Aerospace Problems, February Readings-2019, National Aviation Academy, Baku, Azerbaijan, February 27-28, 2019, pp.28–31.