Aircraft Trim Analysis by Particle Swarm Optimization

In this work, a detailed nonlinear model for the full dynamics of the F-16 aircraft is first developed and coded in MATLAB. This model includes the gravity model, variable atmospheric parameters, tabular aerodynamic functions, propulsion model, nonlinear control surface actuation models, and six degrees of freedom equations of motion. A numerical tool for computing all possible trim values, using the aforementioned model, is then developed. This tool can calculate the trim values at different operating points. In the developed algorithms, particle swarm optimization (PSO) method, which is a meta-heuristic method with a high convergence rate over a continuous search space, is used. Simulations around the calculated trim values are then made using the developed model. Simulation results confirm that the PSO based trim algorithm can find all the trim values with a high accuracy.

Parçacık Sürü Optimizasyonu ile Uçak Trim Analizi

Bu çalışmada, F-16 uçağının tam dinamikleri için ayrıntılı bir doğrusal olmayan model ilk olarak MATLAB'da geliştirildi ve kodlandı. Bu model, yerçekimi modelini, değişken atmosferik parametreleri, tablo halinde aerodinamik fonksiyonları, itki modelini, doğrusal olmayan kontrol yüzeyi modellerini ve altı serbestlik dereceli hareket denklemlerini içerir. Yukarıda bahsedilen modeli kullanarak olası tüm trim değerlerini hesaplamak için nümerik bir hesaplama aracı geliştirilmiştir. Bu araç, farklı çalışma noktalarındaki trim değerlerini hesaplayabilir. Geliştirilen algoritmalarda, sürekli arama alanı üzerinden yüksek yakınsama oranına sahip meta-sezgisel bir yöntem olan parçacık sürüsü optimizasyonu (PSO) yöntemi kullanılmıştır. Hesaplanan trim değerleri etrafındaki açık-döngü simülasyonlar geliştirilen model kullanılarak koşturulur. Simülasyon sonuçları, PSO tabanlı trim algoritmasının tüm trim değerlerini yüksek hassasiyetle bulabileceğini göstermektedir.

___

[1] B. Etkin and L. D. Reid, “Dynamics of Flight: Stability and Control,” New York: Wiley, 1996.

[2] R. Gilmore, “Catastrophe Theory for Scientists and Engineers,” Courier Corporation, 1993.

[3] N. Ananthkrishnan and K. S. Nandan, "Level Flight Trim and Stability Analysis Using Extended Bifurcation and Continuation Procedure," Journal of Guidance, Control, and Dynamics, Vol. 24, pp. 1225-1228, 2001.

[4] A. Paranjape, N. Sinha and N. Ananthkrishnan, "Use of Bifurcation and Continuation Methods for Aircraft Trim And Stability Analysis: A State-Of-The-Art," Proceedings of the 45th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, pp. 1051-1069, 2007.

[5] R. Enns and J. Si, "Helicopter Trimming and Tracking Control Using Direct Neural Dynamic Programming," IEEE Transactions on Neural Networks, Vol. 14, pp. 929-939, 2003.

[6] J. Tupy and I. Zelinka, "Evolutionary Algorithms in Aircraft Trim Optimization," Proceedings of the 19th International Workshop on Database and Expert Systems Application, Turin, Italy, pp. 524-530, 2008.

[7] W. Wang, D. Li and C. Liu, “Helicopter Flight Simulation Trim in the Coordinated Turn with the Hybrid Genetic Algorithm,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 233, No. 3, pp. 1159-1168, 2017.

[8] J. Kennedy and R. Eberhart, "Particle Swarm Optimization,” Proceddings of IEEE International Conference on Neural Networks, Perth, WA, Australia, pp. 1942–1948, 1995.

[9] M. Clerc, Particle Swarm Optimization. John Wiley & Sons, 2010.

[10] G. Venter and J. Sobieszczanski-Sobieski, "Particle Swarm Optimization," AIAA Journal, Vol. 41, No. 8, pp. 1583-1589, 2003.

[11] A. Andreeva-Mori, K. Kobayashi and M. Shindo, “Particle Swarm Optimization/Greedy-Search Algorithm for Helicopter Mission Assignment in Disaster Relief,” Journal of Aerospace Information Systems, Vol. 12, No. 10, pp. 646-660, 2015.

[12] J. L. Foo, J. Knutzon, V. Kalivarapu, J. Oliver and E. Winer, “Path Planning of Unmanned Aerial Vehicles Using B-Splines and Particle Swarm Optimization,” Journal of Aerospace Computing, Information, and Communication, Vol. 6, No. 4, pp. 271-290, 2009.

[13] R. J. Kenefic, “Finding Good Dubins Tours for Uavs Using Particle Swarm Optimization,” Journal of Aerospace Computing, Information, and Communication, Vol. 5, No. 2, pp. 47-56, 2008.

[14] L. Sonneveldt, E. R. Van Oort, Q. P. Chu and J. A. Mulder, “Nonlinear Adaptive Trajectory Control Applied to an F-16 Model,” Journal of Guidance, Control, and Dynamics, Vol. 32, No. 1, pp. 25-39, 2009.

[15] S. Thomas, H. Kwatny, B. C. Chang and C. Belcastro, “Regulator Design for Control Surface Failure Acccommodation in an F-16,” Proceedings of the AIAA Guidance, Navigation, and Control Conference and Exhibit, San Francisco, CA, USA, pp. 1-10, 2005.

[16] F. Liao, J. L. Wang and G. Yang, "Reliable Robust Flight Tracking Control: An LMI Approach," IEEE Transactions on Control Systems Technology, Vol. 10, pp. 76-89, 2002.

[17] R. Bhattacharya, G. J. Blas, A. Kaya and A. Packard, "Nonlinear Receding Horizon Control of an F-16 Aircraft," Journal of Guidance, Control, and Dynamics, Vol. 25, No. 5, pp. 924-931, 2002.

[18] R. J. Adams, J. M. Buffington, A. G. Sparks, and S. S. Banda, “Robust Multivariable Flight Control,“ Springer Science & Business Media, 2012.

[19] İ. Gümüşboğa and A. İftar, “Modeling Of Asymmetrical Elevator Failures in the F-16 Aircraft,” Proceedings of the AIAA SciTech Forum and Exposition, San Diego, CA, USA, 2019.

[20] J. H. Blakelock, Automatic Control of Aircraft and Missiles. John Wiley & Sons, 1991.

[21] C. Edwards, T. Lombaerts and H. Smaili, “Fault Tolerant Flight Control,” Lecture Notes in Control and Information Sciences, Springer, 2010.

[22] L. T. Nguyen, M. E. Ogburn, W. P. Gilbert, K. S. Kibler, P. W. Brown and P. L. Deal, "Simulation Study of Stall/Post-Stall Characteristics of a Fighter Airplane with Relaxed Static Stability," NASA Langley Research Center, Hampton, VA, Tech. Rep. NASA-TP-1538, Technical Report, 1979.

[23] Y. Huo, "Model of F-16 Fighter Aircraft," University of Southern California, Technical Report, 2007.

[24] B. L. Stevens, F. L. Lewis and E. N. Johnson, Aircraft Control and Simulation: Dynamics, Controls Design, and Autonomous Systems. John Wiley & Sons, 2015.

[25] A. Eugene, "Global Nonlinear Parametric Modeling with Application to F-16 Aerodynamics," Proceedings of the American Control Conference, Philadelphia, PA, USA, Vol. 2, pp. 997-1001, 1998.

[26] B. Hofmann-Wellenhof, H. Lichtenegger and J. Collins., Global Positioning System: Theory and Practice. Springer Science & Business Media, 2012.

[27] P. D. Groves, Principles of GNSS, Inertial, and Multisensor Integrated Navigation Systems, Artech House, 2013.

[28] M. Cavcar, “The International Standard Atmosphere (ISA),” Anadolu University, Technical Report, 2000.