Methodology and Realization of a Heat Pipe Performance Test in a Thermal Vacuum Chamber

In this study, a newly developed test set-up installed in a thermal vacuum chamber and the thermal performance test conducted with this set-up is described. Evaporator is simulated by using mounted resistive heaters on it whereas two black painted aluminum plates in contact with the condenser are used to remove heat from heat pipe. Thanks to the vacuum level obtained in the chamber, the convection heat transfer is eliminated; so, the heat loss from heat pipe can be neglected while calculating the maximum heat transport capacity of the heat pipe. When the proposed test methodology is applied and the measured test parameters are used, maximum heat transport capacity and effective thermal conductivity of a heat pipe can be calculated with uncertainties of % 2 and % 6.4, respectively. Therefore, the proposed test set-up and test methodology is demonstrated to be an efficient tool for the determination of heat pipe thermal parameters.

Bir Isıl Vakum Odasında Isı Borusu Performans Testi Gerçekleştirilmesi ve Testin Metodolojisi

Bu çalışmada, ısıl vakum odasına konumlandırılmış, ısı borusunun ısıl performans testine yönelik yeni geliştirilmiş bir test düzeneği ve bu düzenekle gerçekleştirilen ısıl performans testi üzerinde durulmuştur. Buharlaştırıcı, yüzeylerine yerleştirilen direnç telli ısıtıcılarla temsil edilirken, yoğuşturucu ise her iki yüzeyine temas halinde olan siyah boyalı alüminyum plakalar kullanılarak elde edilmiştir. Isıl vakum odasında elde edilen vakum seviyesi sayesinde taşınım ısı transferi ortamdan kaldırılmış, böylece ısı borusundan olan ısı kaçakları ihmal edilerek maksimum ısı taşıma kapasitesi hesaplanabilmiştir. Çalışmada önerilen test metodolojisi uygulanıp test verileri kullanıldığında ısı borusunun maksimum ısı taşıma kapasitesi ve etkin ısıl iletkenliği nispeten küçük belirsizliklerle bulunabilmiş, böylece önerilen test düzeneği ve yönteminin ısı borusu ısıl performans parametrelerinin elde edilebilmesinde etkin bir düzenek ve yöntem olduğu gösterilmiştir.

___

[1] H. G. Isık, C. Omur, A. B. Uygur and I. Horuz, “A Novel Burst Testing Approach for the Qualification of Heat Pipes Used in Space Applications,” International Journal of Pressure Vessels and Piping, Vol. 165, pp. 214-248, 2018.

[2] C. Omur, A. B. Uygur, H. G. Isık and I. Horuz, “Manufacturing Phase Embedded Design Optimization of Extruded Heat Pipes for Space Applications,” Applied Thermal Engineering, Vol. 126, pp. 436-446, 2017.

[3] C. Omur, A. B. Uygur and I. Horuz, “The Effect of Manufacturing Limitations on Groove Design and Its Implementation to an Algorithm for Determining Heat Transport Capability of Heat Pipes,” Journal of Thermal Science and Technology, Vol. 37, No. 1, pp. 159-170, 2017.

[4] C. Omur, A. B. Uygur, I. Horuz, H. G. Isık, S. Ayan and M. Konar, “Incorporation of Manufacturing Constraints into an Algorithm for the Determination of Maximum Heat Transport Capacity of Extruded Axially Grooved Heat Pipes,” International Journal of Thermal Sciences, Vol. 123, pp. 181-190, 2018.

[5] H. Alijani, B. Cetin, Y. Akkus and Z. Dursunkaya, “Effect Of Design And Operating Parameters on the Thermal Performance of Aluminum Flat Grooved Heat Pipes,” Applied Thermal Engineering, Vol. 132, pp. 174-187, 2018.

[6] H. Alijani, B. Cetin, Y. Akkus and Z. Dursunkaya, “Experimental Thermal Performance Characterization of Flat Grooved Heat Pipes,” Heat Transfer Engineering.

[7] W. C. Wei, S. H. Tsai, S. Y. Yang and S. W. Kang, “Effect of Nanofluid Concentration on Heat Pipe Thermal Performance,” 3th ASME/WSEAS International Conference on Heat Transfer, Thermal Engineering and Environment, pp. 115-117, 2005

[8] A. R. Anand, A. J. Vedamurthy, S. R. Chikkala, S. Kumar, D. Kumar and P. P. Gupta, “Analytical and Experimental Investigations on Axially Grooved Aluminum-Ethane Heat Pipe,” Heat Transfer Engineering, pp. 410-416, 2008.

[9] Y. Chen, F. Yao and M. Shi, “Thermal Response of a Heat Pipe with Axially “Ω” Shaped Microgrooves,” International Journal of Heat and Mass Transfer, Vol. 55, pp. 4476-4484, 2012.

[10] J. J. Bertoldo, V. V. Vlassov, P. A. Cândido and G. Genaro, “Experimental Performance Comparison of Axially Grooved Heat Pipes Charged with Acetone and Ammonia,” 16th International Heat Pipe Conference, pp. 20-24, 2012.

[11] Z. Lataoui, C. Romestant, Y. Bertin, A. Jemni and D. Petit, “Experimental Investigation on the Thermal Behavior and Performance of an Axially Grooved Heat Pipe,” International Journal of Heat and Technology, Vol. 26, No. 2, 2008.

[12] K. R. Schlitt, P. J. Brennan and J. P. Kirkpatrick, “Parametric Performance of Extruded Axial Grooved Heat Pipes from 100° to 300°K,” AIAA/ASME Thermophysics and Heat Transfer Conference.

[13] G. L. Fleischman, T. C. Chiang and R. D. Ruff, “Oxygen Heat Pipe 0-G Performance Evaluation Based on 1-G Tests,” AIAA 26th Thermophysics Conference, 1991.

[14] D. G. Gilmore, “Spacecraft Thermal Control Handbook,” The Aerospace Press, 2nd edition, Vol. 1, 2002.

[15] P. J. Brennan and E. J. Kroliczek, “Heat Pipe Design Handbook,” Maryland: B&K Engineering, 1979.

[16] Y. Chen, C. Zhang, M. Shi, J. Wua and G. P. Peterson, “Study on Flow and Heat Transfer Characteristics of Heat Pipe with Axial “Ω” Shaped Microgrooves,” International Journal of Heat and Mass Transfer, Vol. 52, pp. 636-643, 2009.

[17] L. Weiner, P. Chiotti, and H.A. Wilhem, “Temperature Dependence of Electrical Resistivity of Metals,” Ames Laboratory ISC Technical Reports, pp. 12-65, 1952.

[18] İnternet: Claybornlab Heat Tape Specifications Available:.http://www.claybornlab.com/heat_tape_specifications.html. [Accessed: 29.11.2018]

[19] European Cooperation for Space Standardization, ECSS-E-10-03A Space Engineering Testing, Noordwijk, The Netherlands, 2002.

[20] B. Zohuri, “Heat Pipe Design and Technology, Modern Applications for Practical Thermal Management,” 2nd edition, Switzerland: Springer, 2016.