Effect of Ambient Temperature Variations on the Direct Operating Cost of a Domestic Flight

This paper analyzes the direct effect of variable ambient temperature during the cruising phase and its effects on the strategies to reduce airlines direct operating costs. Fuel and time efficiency have become an increasingly important factor in the aviation industry. The fuel is one of the largest parts of airlines operating expenses and time is a parameter affecting direct operating cost items such as flight crew salaries, air traffic enroute charges and maintenance etc. A comprehensive aircraft performance model is developed to estimate the changes in fuel consumption and flight time by an Airbus 320-214 due to daily temperature variations. The seasonal change of the tropopause height is taken into the account in the atmosphere model. Cost index is kept as constant in the analyses. A domestic flight between Istanbul and Hakkari is used as a sample to predict changes in the direct cost of flight at day and night, in the summer and the winter seasons. The flight time is noticed to be changing significantly with respect to temperature variations.

Çevresel Sıcaklık Değişiminin Bir İç Hat Uçuşunun Doğrudan İşletme Maliyetine Etkisi

Bu makalede, seyir uçuşu safhasında, değişken çevresel sıcaklığın havayolunun doğrudan işletme maliyetini düşüren stratejilerine etkileri incelenmiştir. Yakıtın ve zamanın verimli kullanımı, havacılık endüstrisinde gün geçtikçe daha da önemli bir faktör olmaktadır. Yakıt, havayolları işletme giderlerinin en büyük kalemidir. Zaman ise uçuş mürettebatı maaşları, hava trafiği yol ücretleri, bakım gibi doğrudan işletme maliyeti kalemlerini etkilemektedir. Airbus 320-214 tipi bir yolcu uçağının, yakıt tüketimindeki ve uçuş süresindeki değişikliklere, günlük sıcaklık değişiminin etkisini tahmin etmek için kapsamlı hava aracı performans modeli geliştirilmiştir. Tropopoz yüksekliğinin mevsimsel değişimi de atmosfer modelinde hesaba katılmıştır. Analizlerde maliyet endeksi sabit tutulmuştur. Çalışmada, İstanbul ile Hakkâri arası iç hat uçuşu, kış ve yaz mevsimlerinde ve gündüz ve gece uçuşlarında doğrudan uçuş maliyetinin değişimi için incelenmiştir. Uçuş süresinin sıcaklık varyasyonu ile önemli şekilde değiştiği gözlenmiştir.

___

[1] R. Doganis, “Flying off Course: Airline Economics and Marketing,” Fourth Edition. Routledge, London, 2010.

[2] International Air Transport Association (IATA), “FACT SHEET: Fuel,” Dec-2018. [Online]. https://www.iata.org/pressroom/facts_figures/fact_sheets/Documents/fact-sheet-fuel.pdf [Accessed: Dec. 15, 2018].

[3] R.A.G. Eller and M. Moreira, “The Main Cost-Related Factors in Airlines Management.” Journal of Transport Literature, Vol. 8, No. 1, pp. 8-23, 2014.

[4] Turkish Airlines THY, Annual report, 2017, [Online],http://investor.turkishairlines.com/documents/ThyInvestorRelations/eng-thy_cift.pdf [Accessed: Dec. 21, 2018].

[5] P. Belobaba, A. Odoni, and C. Barnhart (Eds.), “Airline Operating Costs and Measures of Productivity in the Global Airline Industry,” 2nd ed., John Wiley & Sons, Chichester, UK, 2016.

[6] J. M. Rosenberger and Coauthors, “A Stochastic Model of Airline Operations,” Transp. Sci,, Vol. 36, pp. 357–377.

[7] S. Lan, J. P. Clarke and C. Barnhart, “Planning for Robust Airline Operations: Optimizing Aircraft Routings and Flight Departure Times to Minimize Passenger Disruptions,” Transp., 2006.

[8] P. D. Williams, and M. M. Joshi, “Intensification of Winter Transatlantic Aviation Turbulence in Response to Climate Change.” Nat. Climate Change, Vol.3, pp.644–648, 2013.

[9] L. Delgado and X. Prats, “Fuel Consumption Assessment for Speed Variation Concepts During the Cruise Phase” Conference on Air Traffic Management (ATM) Economics, Belgrade, 2009.

[10] EUROCONTROL. Base of Aircraft Data (BADA), http://www.eurocontrol.int/services/bada . [Online] [Accessed: Jan. 2019].

[11] EUROCONTROL. "User Manual for the Base of Aircraft Data (BADA) Revision 4.1." User Manual, 2016.

[12] J. Yanto, and R. P. Liem, “Aircraft Fuel Burn Performance Study: A Data-Enhanced Modeling Approach” Transportation Research Part D: Transport and Environment, Vol. 65, pp. 574-595, 2018.

[13] B. Dancila, R. M. Botez and D. Labour, “Fuel Burn Prediction Algorithm for Cruise, Constant Speed and Level Flight Segments,” The Aeronautical Journal , Vol. 117, No. 1191, 2013.

[14] N. K. Wickramasinghe, Y. Miyamoto, A. Harada and Y. Fukuda, “Flight Trajectory Optimization for Operational Performance Analysis of Jet Passenger Aircraft,” Transactions of the Japan Society for Aeronautical and Space Sciences, Aerospace Technology Japan 12 (APISAT-2013): a17-a25, 2014.

[15] A. Franco and D. Rivas, “Minimum-Cost Cruise at Constant Altitude of Commercial Aircraft Including Wind Effects” Journal of Guidance Control and Dynamics, Vol. 34, No .4, pp. 1253-1260, 2011.

[16] EUROCONTROL EXPERIMENTAL CENTRE, Concept Document for the Base of Aircraft Data (BADA) Family 4, 2012.

[17] Airbus A318/A319/A320/A321 FLIGHT CREW OPERATING MANUAL FCOM, 2005

[18] Airbus, Getting to Grips with Fuel Economy, Blagnac, France, Jan. 2004. [19] Airbus, Getting to Grips with Aircraft Performance monitoring, Blagnac, France, Jan. 2002.

[20] Airbus, Getting to Grips with the Cost Index, Blagnac, France, Jan. 1998.

[21] Trevor M. Young, “Performance of the Jet Transport Airplane Analysis Methods, Flight Operations, and Regulations,” Wiley, 2018.

[22] W. Roberson, R. Root and D. Adams, “Fuel Conservation Strategies: Cruise Flight,” Aero,The Boeing Company, Seattle, WA, Vol. 4, pp. 23–27, 2007.

[23] L. Seto, “Cost Index,” Flight Operations Engineering, Boeing Commercial Airplanes, Seattle, WA, 2009.

[24] Airbus, “Getting to Grips with Aircraft Performance,” Flight Operations Support and Line Assistance, Airbus S.A.S., Blagnac, France, Jan. 2002.

[25] Sky Vector Aeronautical Charts, https://skyvector.com/ , 2018.

[26] Tarım ve Orman Bakanlığı Meteoroloji Genel Müdürlüğü. https://mgm.gov.tr/, 2019.

[27] The Turkish State Meteorological Service, https://hezarfen.mgm.gov.tr, 2019.