Termal bariyer kaplama sistemlerinde yüksek sıcaklıkta düşük çevrimli yorulma şartları altında oluşan hasarların incelenmesi

Termal bariyer kaplamalar (TBC); gelişmiş türbinli motorların yanma odası ve türbin gibi sıcak bölümlerinde, parçaları sıcak gazların olumsuz etkilerinden korumak amacıyla kullanılan ve iki ya da daha fazla katmandan oluşan koruyucu kaplamalardır. Günümüzde güvenilir bir ömür tahmini olmadığından bu kaplamaların potansiyeli tam olarak değerlendirilememektedir. Termal bariyer kaplamalardaki hasar mekanizmaların ın iyi bir şekilde anlaşılması, kaplamanın sağlamlığının ve güvenirliğinin arttırılması için kilit faktördür. Bu çalışmada ilk önce TBC sistemleri kısaca tanıtılmış, ardından yüksek sıcaklıkta düşük çevrimli yorulma deneyleri sonucunda oluşan hasarlar ve olası nedenleri açıklanmıştır. Altlık malzemesi olarak yönlü katılaştırılmış nikel bazlı bir süperalaşım olan Inconel 100 (IN 100 DS), bağ kaplama olarak yaklaşık 120 μm kalınlığında bir NiCoCrAlY tabakası, üst kaplama olarak da yaklaşık 200 μm kalınlığında, ağırlık olarak %7 itriyum oksit ile kısmen kararlı hale getirilmiş zirkonyum oksit içeren seramik tabakası kullanılmıştır. Her iki tabaka da EB-PVD tekniği kullanılarak hazırlanmıştır. Yapılan deneyler sonucunda çatlak sayısı ve çatlak boyutunun uzama aralığıyla doğru orantılı bir şekilde değiştiği saptanmıştır. Çatlaklar TGO/BC arayüzeyinde başlamakta ve altlığa doğru yükleme eksenine dik bir şekilde ilerlemektedirler. Seramik termal bariyer kaplama tabakası çatlak oluşumunu geciktirmektedir. Yalnızca bağ kaplamaya sahip numunelerin yüzeylerinde, türbin kanatçıklarında görülen tipik servis hasarlarından birisi olan buruşma saptanmıştır.

Failure of thermal barrier coatings under high temperature low cycle fatigue conditions

Thermal Barrier Coatings (TBCs) are multi-layer protective coatings used in the hot section components such as combustor and turbine of advanced gas turbine engines to protect them from degrading affects of hot gases. Today, due to lack of a reliable life time assessment, the potential of these coatings cannot be fully used. Understanding of damage mechanisms of thermal barrier coatings is the key factor to increase durability and reliability. In this paper TBCs are shortly introduced and then damages resulting from high temperature low cycle fatigue tests and their probable reasons have been explained. Inconel 100, a directionally solidified nickel based superalloy as a substrate, approximately 120 μm thick NiCoCrAlY bond coat and approximately 200 μm thick 7 wt % Yttria Stabilized Zirconia ceramic top coat have been used. Both layers are deposited by EB-PVD technique. The results of the tests show that number and the size of the cracks changes with the strain range. Cracks initiate in the TGO/BC interface and propagate into the substrate perpendicularly to the loading axes. Ceramic thermal barrier coating retards the formation of cracks. On the surfaces of the specimens having only bond coat, rumpling which is a typical service damage of turbine blades has been detected.

___

  • [1] Kaysser, W.A., Peters, M., Fritscher, K. ve Schulz, U., “Processing, characterisation and testing of EB-PVD Thermal Barrier Coatings”, AGARD SMP Meeting on Thermal Barrier Coatings, Denmark, 1997.
  • [2] Williams, J.C. ve Edgar, E.A., “Progress in structural materials for aerospace systems”, Acta Materialia Vol. 51, 5775-5799, 2003.
  • [3] Peters, M., Leyens, C., Schulz, U ve Kaysser, W.A., “EB-PVD thermal barrier coatings for aeroengines and gas turbines”, Advanced Engineering Materials, Vol. 3, No. 4, 193-204, 2003.
  • [4] Schmitt, G. ve Hertter, M., “Improved oxidation resistance of thermal barrier coatings”, Surface and Coatings Technology, Vol. 120-121, 84- 88, 1999.
  • [5] Horne, D.F., “Aircraft production technology”, Cambridge University Press, UK, 1985.
  • [6] Leyens, C., Fritscher, K., Gehrling, R., Peters, M. ve Kaysser, W.A., “Oxide scale formation on an MCrAlY coating in various H2-H2O atmospheres”, Surface and Coatings Technology, Vol. 82, 133-144, 1996.
  • [7] Beele, W., Marijnissen, G. ve Lieshot, A., “The evolution of thermal barrier coatings-status and upcoming solutions for today’s key issues”, Surface and Coatings Technology, Vol. 120-121, 61-67, 1999.
  • [8] Schulz, U., “Phase transformation in EB-PVD yttria partially stabilized zirconia thermal barrier coatings during annealing”, Journal of American Ceramic Society, Vol. 83, 904-910, 2000.
  • [9] Kaysser, W.A., Bartsch, M., Krell, T., Fritscher, K., Leyens, C., Schulz, U. ve Peters, M., “Ceramic thermal barriers for demanding turbine applications”, Ceramic Forum International, Vol. 6, 32-36, 2000.
  • [10] Schulz, U., Krell, T., Leushake, U. ve Peters, M., “Graded design of EB-PVD thermal barrier coating”, AGARD SMP Meeting on Thermal Barrier Coatings, Denmark, 1997.
  • [11] Hass, D.D., “Thermal barrier coatings via directed vapour deposition”, A Dissertation the Faculty of the School of Engineering and Applied Science, University of Virginia, USA., 2001.
  • [12] Bartsch, M., Schulz, U. ve Saruhan, B., “EBPVD Thermal Barrier Coatings for Gas Turbines- Processing and Lifetime Assessment”, Proceeding of the Summer School of the EU Project “SICMAC” (HPRN-CT-2082-20203),191-214, Mao Minorca Island, Spain, 2006.
  • [13] Morrell, P. ve Rickerby, D.S., “Advantages / disadvantages of various TBC systems as perceived by the engine manufacturer”, AGARD SMP Meeting on Thermal Barrier Coatings, Denmark, 1997.
  • [14] Alperiné, S., Derrien, M., Jaslier, Y. ve Mévrel, R., “Thermal barrier coatings: the thermal conductivity challenge”, AGARD SMP Meeting on Thermal Barrier Coatings, Denmark, 1997.
  • [15] Xu, H., Gong, S. ve Deng, L., “Preparation of thermal barrier coatings for gas turbine blades by EBPVD”, Thin Solid Films, Vol. 334, 98-102, 1998.
  • [16] Lau, H., Leyens, C., Kaden, U., Schulz, U., Münzer, J., Friedrich, C. ve Cosack, T., “Influence of bondcoat pre-treatment on the cyclic lifetime of EBPVD TBCs”, Materials Week 2001-Proceedings, Werkstoff-Informationsgesellschaft mbH, Frankfurt, Germany, 1-8, 2002.
  • [17] Guerre, C., Molins, R. ve Remy, L., “Study of the coating stability of a TBC system”, Materials at High Temperatures, Vol. 17 No. 2, 197-204, 2000.
  • [18] Chen, X.Q. ve Newaz, M., “Oxidation and damage of EB-PVD thermal barrier coatings under thermal cycling”, Journal of Materials Science Letters, Vol. 20, 93-95, 2001.
  • [19] Hass, D.D., Slifka, A.J. ve Wadley, H.N.G., “Low thermal conductivity vapour deposited zirconia microstructures”, Acta Materialia, Vol. 49, 973-983, 2001.
  • [20] Karlsson, A.M. ve Evans, A.G., A numerical model for the cyclic instability of thermally grown oxides in thermal barrier systems, Acta Materialia, 49, 1793-1804, 2001.
  • [21] Karlsson, A.M. ve Evans, A.G., “A numerical model of ratcheting in thermal barrier systems”, Mat. Res. Soc. Symp. Proc., Materials Research Society, USA, 645E, M9.4.1-6, 2001.
  • [22] Selçuk, A. ve Atkinson, A., “Analysis of the Cr3+ luminescence spectra from thermally grown oxide in thermal barrier coatings”, Materials Science and Engineering A, Vol. 335, 147-156, 2002.
  • [23] Hutchinson, J.W. ve Evans, A.G., “On the delamination of thermal barrier coatings in a thermal gradient”, Surface and Coatings Technology, Vol. 149, 179-184, 2002.
  • [24] Bouyakis, K.-D., Lontos, A., Michailidis, N., Knotek, O., Lugscheider, E., Bobzin, K. ve Etzkorn, A., “Determination of mechanical properties of electron beam-physical vapour deposition-thermal barrier coatings (EB-PVD-TBCs) by means of nanoindention and impact testing”, Surface and Coatings Technology, Vol. 163-164, 75-80, 2003.
  • [25] Schulz, U., Lau, H., Rätzer-Schibe, H.-J. ve Kayser W.A., “Factors affecting cyclic lifetime of EBPVD thermal barrier coatings with various bond coats”, Zeitschrift für Metallkunde, Vol. 94 No. 6, 649-654, 2003.
  • [26] Freborg, A.M., Ferguson, B.L., Brindley, W.J. ve Petrus, G.J., “Modeling oxidation induced stresses in thermal barrier coatings”, Materials Science and Engineering A, Vol. 245, 182-190, 1998.
  • [27] Vaßen, R., Kerkhoff, G. ve Stöver, D., “Development of a micromechanical life prediction model for plasma sprayed thermal barrier coatings”, Materials Science and Engineering A, Vol.303, 100- 109, 2001.
  • [28] Pennefather, R.C. ve Bone, D.H., “Mechanical degredation of coating systems in high temperature cyclic oxidation”, Surface and Coatings Technology, Vol. 76-77, 47-52, 1995.
  • [29] Bartsch, M. ve Baufeld, B., “Effects of controlled thermal gradients in thermal mechanical fatigue”, 5th International Conference on Low Cycle Fatigue (Editörler: Portella, P.d., Şehitoğlu, H. ve Hatanaka, K.), Deutscher Verband für Materialforschung und –prüfung e.V., Berlin, Germany, 183-188, 2003.
  • [30] Suresh, S., Fatigue of materials, Cambridge University Press, A.B.D., 1992.