Alüminyum levhaların yüksek hızlı çarpma davranışları için ampirik bir model

Alüminyum alaşımı levhalar düşük yoğunluk, yüksek yapısal mukavemet ve enerji emiş kapasitesi özellikleri nedeniyle uçak yapıları, gemi, bina ve köprü gibi çok çeşitli uygulamaların yanında hafif korunma sistemlerinde de sıklıkla kullanılmaktadır. Yüksek hızlı çarpma yükleri altındaki malzeme davranışı konusundaki bu geniş uygulama alanı, çarpma sonrasında oluşacak hasarın ve delinme miktarının belirlenmesi konusunda geliştirilecek analitik modellerin önemini artırmaktadır. Bu çalışmada, 4.80 mm ve 6.35 mm kalınlığında hazırlanan T351 ısıl durumundaki 2024 alaşımı alüminyum levhaların delinme miktarlarının belirlenmesinde kullanılabilecek üstel bir ifade önerilmiştir. Sonuçlar, önceki çalışmalarda 9 mm çapında MKEK yapımı Parabellum mermiler kullanılarak elde edilen deneysel çalışma sonuçları ile karşılaştırılmış, önerilen ifadenin AA 2024 T351 alaşımı levhaların yüksek hızlı çarpma yüklemesi durumundaki delinme miktarını, deneylerde belirtilen hızlar civarında güçlü bir şekilde temsil edebileceği belirlenmiştir.

An Empirical model for high velocity impact behavior of aluminum plates

Due to their low density, high structural strength and energy absorption capacity, aluminum alloys are frequently used in lightweight armor systems such as aeronautics applications, offshore platforms, ship components, bridge decks, etc. This wide application area considering behavior of materials subjected to high velocity impact load increases the importance of the investigations about developing analytical solutions to determine the failure mechanisms and penetration depth caused by high velocity impact. In this study, an exponential equation was proposed that can be used to determine the penetration depth of the 2024 aluminum alloys of T351 condition. Comparing the analytical results with the results of previous experimental study which used the 9 mm Parabellum bullets, it was determined that equation proposed efficiently model the penetration depth of the AA 2024 T351 plates under impact load at velocity level in experiments.

___

  • [1] Børvik, T., Clausen, A.H., Eriksson, M., Berstad, T., Hopperstad, O.S. and Langseth, M., “Experimental and numerical study on the perforation of AA6005-T6 panels” (2005) Int. Journal of Impact Engineering, Vol.32, pp. 35-64,.
  • [2] Roisman, I.V., Yarin, A.L. and Rubin, M.B., (1997) “Oblique penetration of a rigid projectile into an elastic-plastic target” Int. Journal of Impact Engineering, Vol.19, pp. 769-795.
  • [3] Yossifon, G., Rubin, M.B. and Yarin, A.L., (2001) “Penetration of a rigid projectile into a finite thickness elastic-plastic target − comparison between theory and numerical computations” Int. Journal of Impact Engineering, Vol. 25, pp. 265- 290.
  • [4] Yossifon, G., Yarin, A.L. and Rubin, M.B., (2002) “Penetration of a rigid projectile into a multi-layered target: theory and numerical computations” Int. Journal of Engineering Science, 40, 1381-1401.
  • [5] Chen, X.W. and Li, Q.M., (2003) “Perforation of a thick plate by rigid projectiles” Int. Journal of Impact Engineering, Vol. 28, pp. 743-759.
  • [6] Li, Q.M., Weng, H.J. and Chen, X.W.,8 2009) “A modified model for the penetration into moderately thick plates by a rigid, sharp-nosed projectile” Int. Journal of Impact Engineering, Vol. 30, pp. 193-204.
  • [7] Wijk, G., Hartmann, M. and Tyrberg, A., (2005) “A model for rigid projectile penetration and perforation of hard steel and metallic target” Swedish Defense Research Agency, FOI-R-1617- SE.
  • [8] Liu, D. and Strong, W.J., (2000) “Ballistic limit of metal plates struck by blunt deformable missiles: experiments” Int. Journal of Solids and Structures, Vol. 37, pp. 1403-1423.
  • [9] Roisman, I.V., Yarin, A.L. and Rubin, M.B., (2001) “Normal penetration of an eroding projectile into an elastic-plastic target” Int. Journal of Impact Engineering, 25, 573-597.
  • [10] Rubin, M.B. and Yarin, A.L., (2002) “A generalized formula for penetration depth of a deformable projectile” Int. Journal of Impact Engineering, Vol. 27, pp.387-398.
  • [11] Gee, D.J., (2003) “Plate perforation by eroding rod projectiles” Int. Journal of Impact Engineering, Vol. 28, pp. 377-390.
  • [12] Billon, H., (1998) “A Model for Ballistic Impact on Soft Armor” DSTO Aeronautical and Maritime Research Laboratory, Melbourne.
  • [13] Børvik, T., Langseth, M., Hopperstad, O.S. and Malo, K.A., (1999) “Ballistic penetration of steel plates” Int. Journal of Impact Engineering, Vol. 22, pp. 855-886.
  • [14] Sciuva, M., Frola, C. and Salvano, S., (2003) “Low and high velocity impact on Inconel 718 casting plates: ballistic limit and numerical correlation” Int. Journal of Impact Engineering, Vol. 28, pp. 849-876.
  • [15] Lopez-Puente, J., Arias, A., Zaera, R. and Navarro, C., (2005) “The effect of the thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study” Int. Journal of Impact Engineering, Vol. 32, pp. 321-336.
  • [16] Zukas, J.A., (1990) High Velocity Impact Dynamics, John Wiley&Sons Inc., Chichester.
  • [17] Nemat-Nasser, S., Kang, W.J., McGee, J.D., Guo, W-G. and Isacs, J.B., (2007) “Experimental investigation of energy-absorption characteristics of components of sandwich structures” Int. Journal of Impact Engineering, Vol. 34, pp. 1119-1146.
  • [18] Özşahin, E. ve Tolun, S., (2008) “AA 2024 T351 levhaların balistik davranışlarının deneysel ve sayısal olarak incelenmesi” VII. Havacılık Sempozyumu, Kayseri, 15-16 Mayıs, Kayseri.
  • [19] Chapra, S.C. ve Canale, P.C., (2003) “Mühendisler İçin Sayısal Yöntemler” Literatür Yayıncılık, İstanbul. (çev:Heperkan, H. ve Kesgin, U.)
  • [20] Devare, J.L, (1995) “Probability and Statistics for Engineering and the Sciences”, Duxbury Press, Pasific Grove.