Peridynamic Solution of The Steady State Heat Conduction Problem in Plates with İnsulated Cracks

This paper presents the steady-state heat conduction analysis in plates with insulated cracks using peridynamic differential operator (PDDO). The PDDO converts the local differentiation to nonlocal integration. Since the PDDO permits differentiation through integration, the equilibrium equations remain valid in the presence of discontinuities such as cracks. The governing equations of the steady state heat equation and boundary conditions were solved by employing the PDDO. The robustness of the PDDO was assessed by considering a plate without cracks under different boundary conditions. The influence of the insulated cracks on the temperature and heat flux distributions was investigated. It was observed that heat flux concentrations developed in the vicinity of the crack tips.

Yalıtılmış Çatlaklı Levhalarda Kararlı Hal Isı İletimi Probleminin Peridinamik Çözümü

Bu makale, peridinamik diferansiyel operatörü (PDDO) kullanarak yalıtımlı çatlaklara sahip plakalarda kararlı hal ısı iletim analizini sunmaktadır. PDDO, yerel olmayan türev ifadeleri, yerel olmayan integral ifadelerine dönüştürmektedir. PDDO türev alma işlemini, integrasyon yoluyla elde ettiği için, denge denklemleri çatlaklar gibi süreksizliklerin varlığında geçerliğini korumaktadır. Kararlı hal ısı denklemi ve sınır şartları, PDDO kullanılarak çözülmüştür. PDDO'nun sağlamlığı, farklı sınır koşulları altında çatlaksız bir levha göz önüne alınarak değerlendirildi. Yalıtılmış çatlakların, sıcaklık ve ısı akışı dağılımları üzerindeki etkisi incelenmiştir. Çatlak uçlarının çevresinde ısı akısı yoğunlaşmalarının geliştiği gözlenmiştir

___

[1] G. C. Sih, “Heat Conduction in the Infinite Medium With Lines of Discontinuities,” J Heat Trans, Vol. 87, pp. 293-298, 1965.

[2] W. H. Chen and C. L. Chang, “Heat Conduction Analysis of a Plate With Multiple İnsulated Cracks by the Finite Element Alternating Method,” Int J Solids Struct, Vol. 31, pp. 1343-1355, 1994.

[3] W. H. Chen and C. L. Chang, “Analysis of Two-Dimensional Mixed Mode Crack Problems by Finite Element Alternating Method,” Comput Struct, Vol. 33, pp. 1451-1458, 1989.

[4] W. H. Chen and C. L. Chang, “Analysis of Two-Dimensional Fracture Problems with Multiple Cracks Under Mixed Boundary Condition,” Eng Fract Mech, Vol. 34, pp. 921-934, 1989.

[5] S. Li and W. K. Liu, “Meshfree Particle Methods,” Springer; 2004.

[6] G. D. Mahan and F. Claro, “Nonlocal Theory of Thermal-Conductivity,” Phys Rev B, Vol. 38, pp. 1963-1969, 1998.

[7] G. Lebon and M. Grmela, “Weakly Nonlocal Heat Conduction in Rigid Solids,” Phys Lett A, Vol. 214, pp. 184-188, 1996.

[8] W. Gerstle, S. Silling, D. Read, V. Tewary and R. Lehoucq, “Peridynamic Simulation of Electromigration,” Comput Mater Continua, Vol. 8, pp. 75-92, 2008.

[9] F. Bobaru and M. Duangpanya, “The Peridynamic Formulation for Transient Heat Conduction,” Int J Heat Mass Transf, Vol. 53, pp. 4047-4059, 2010.

[10] E. Madenci and E. Oterkus, “Peridynamic Theory and Its Applications,” Springer, 2014.

[11] E. Madenci , A. Barut and M. Dorduncu, “Peridynamic Differential Operator for Numerical Analysis,” Springer, 2019.

[12] S.A. Silling, “Reformulation of Elasticity Theory For Discontinuities and Long-Range Forces,”. J Mech Phy Solids, Vol. 48, pp. 175-209, 2000.

[13] S.A. Silling, M. Epton, O. Weckner, J. Xu, and E. Askari, “Peridynamic States and Constitutive Modeling,” J Elast, Vol. 88, pp.151-184, 2007.

[14] M.N. Ozisik, “Heat Conduction,” Wiley, 1980.