DESIGN AND MODELLING OF NANO AERIAL VEHICLE HUMMINGBIRD MECHANISM ON HOVER FLIGHT

In nature, there are thousands of flapping insects and flying bird’s species. Each one has spectacular flight stability, dynamic and operates in high diversity of flight speed and mission. Each one has superior effectiveness and high efficiency. This paper relates with design and model of an efficient hummingbird mechanism during hovering flight. The proposed mechanism represents new and different concept for point of Nano aerial vehicle’s (NAV’s) mechanism design. In this study, flapping wing tip path for hummingbird was generated from morphological experiment data’s. Slider crank mechanism was designed to be an effective mechanism and same motion with path of hummingbird and analyzed on Simulink with driving crank flapping frequency as 25 Hz. During hovering, forces occurring on designed mechanism were calculated. The system modeled on MATLAB using of Sim-mechanics Toolboxes.

NANO HAVA ARACI SİNEKKUŞU MEKANİZMASININ HAVADA ASKIDA KALMA HAREKETİNİN TASARIMI VE MODELLENMESİ

Doğada kanat çırparak uçan binlerce böcek ve kuş türü vardır. Her biri belirli uçuş kararlılığı, dinamiği ve geniş zarf aralığında uçuş hızı ve göreve sahiptir. Her biri süper efektif ve yüksek verimliliğe sahiptir. Bu makale askıda kalma hareketi boyunca verimli bir Sinekkuşu mekanizmasının tasarımı ve modellenmesi ile ilgilidir. Önerilen mekanizma Nano insansız hava araçlarının mekanizma tasarımı açışından yeni ve farklı kavram ortaya koymaktadır. Bu çalışmada, Morfolojik deneysel verilerden Sinekkuşunun kanat ucundaki izlediği yörünge oluşturuldu. Efektif olduğu ve Sinekkuşunun yörüngesiyle aynı hareketi yaptığı için kaydırıcı krank mekanizması tasarlandı ve askıda kalma hareketinde Sinekkuşunun krankı 25 Hz frekans ile sürülerek Simulink üzerinden analiz edildi. Askıda kalma hareketi boyunca, tasarlanan mekanizma üzerindeki kuvvetler hesaplandı. Sistem MATLAB üzerinden SimMechanics aracı kullanılarak modellendi.

___

Wandling Sr, G.R., Synthesis of mechanisms for function, path, and motion generation using invariant characterization, storage and search methods, 2000.

Keennon, M., Klingebiel, K., and Won, H. “Development of the nano hummingbird: A tailless flapping wing micro air vehicle,” Conf on 50th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, pp. 588, January, 2012.

Hedrick, T. L., Tobalske, B. W., Ros, I. G., Warrick, D. R., and Biewener, A. A., “Morphological and kinematic basis of the hummingbird flight stroke: scaling of flight muscle transmission ratio,” Proc. R. Soc. B, 279(1735), 1986-1992, 2012.

Karasek, M., and Preumont, A. Robotic hummingbird: Design of a control mechanism for a hovering flapping wing micro air vehicle. Université libre de Bruxelles, 2014.

Kruyt, J. W., Quicazán-Rubio, E. M., van Heijst, G. F., Altshuler, D. L., and Lentink, D., “Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors,” Journal of the royal society interface, 11(99), 20140585,2014.

Fearing, R. S. and Wood, R. J., Challenges for 100 milligram flapping flight. In Flying Insects and Robots, pp. 219-229, Springer, Berlin Heidelberg, 2009.

Dileo, C. and Deng, X., “Design of and experiments on a dragonfly-inspired robot,” Advanced Robotics, 23(7-8), 1003-1021, 2009.

Grand, C., Martinelli, P., Mouret, J. B., and Doncieux, S. “Flapping-wing mechanism for a bird- sized UAVs: design, modeling and control,” Conference on Advances in Robot Kinematics, Dordrecht,Springer, pp. 127-134,2008.

Pesavento, U. and Z.J. Wang, “Flapping wing flight can save aerodynamic power compared to steady flight,” Physical review letters, 103(11): pp. 118102, 2009.

Weis-Fogh, T., “Energetics of hovering flight in hummingbirds and in Drosophila,” Journal of Experimental Biology, 56(1): pp. 79-104, 1972.

Shyy, W., Lian, Y., Tang, J., Liu, H., Trizila, P., Stanford, B., and Ifju, P., “Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications,” Acta Mechanica Sinica, 24(4), 351-373,2008.

Shyy, W., Kang, C. K., Chirarattananon, P., Ravi, S., and Liu, H. “Aerodynamics, sensing and control of insect-scale flapping-wing flight,” Proc. R. Soc. A, 472(2186), 20150712, 2016.