Nekroptozis: Serebral ve Miyokardiyal İskemi/Reperfüzyon Hasarı için Terapötik bir Hedef midir?

Programlı bir hücre ölümü olan nekroptozun, iskemi/reperfüzyon (İ/R) hasarına olan katkısını ve kesin önemini tanımlamak için kapsamlı araştırma çalışmaları yürütülmüştür. Bu hücre hasarı süreci, serebral iskemik inme ve miyokard infarktüsünün patofizyolojisinde kritik bir rol oynamaktadır. Böylece, reseptörle etkileşen protein kinazları (RIP1 ve RIP3) ve karışık soy kinaz alanı benzeri psödokinazı (MLKL) içeren nekroptozun kanonik sinyal yolunun bileşenlerinin modülasyonunun nöroprotektif ve kardiyoprotektif etkiler ortaya çıkardığı belgelenmiştir. Bu koruyucu etkiler, infarkt boyutunun küçülmesi ve nörolojik defisitlerin, miyokardiyal disfonksiyonun ve olumsuz kardiyak yeniden şekillenmenin hafifletilmesi ile kanıtlanmaktadır. Son zamanlarda, serebral ve miyokardiyal İ/R hasarında nekroptozun RIPK1-RIPK3-MLKL kanonik moleküler sinyalizasyonuna ek olarak, RIPK3'ün kalmodulin bağımlı protein kinaz IIδ (CaMKIIδ), fosfogliserat mutaz 5 (PGAM5), dynamin-related protein 1 (Drp-1), apoptozu indükleyen faktör (AİF), ksantin oksidaz (XO) ve ölümle ilişkili protein (DAXX) gibi aşağı akış molekülleri etkilediği gösterilerek nekroptozun kanonik olmayan yolları tanımlanmıştır. Bu derlemede serebral ve miyokardiyal İ/R hasarında nekroptozun rolü ve nekroptozu baskılayan farmakolojik ajanların ve genetik modifikasyonların bu hasar üzerine terapötik etkileri ile ilgili in vitro ve in vivo deneysel modellerden elde edilen kanıtlar özetlenmekte ve tartışılmaktadır.

Necroptosis: A Therapeutic Target for Cerebral and Myocardial Ischaemia/Reperfusion Injury?

Extensive research studies have been conducted to define the contribution and exact significance of necroptosis, a programmed cell death, to ischaemia/reperfusion (I/R) injury. This cell damaging process plays a critical role in the pathophysiology of cerebral ischemic stroke and myocardial infarction. Thus, it has been documented that modulation of components of the canonical signalling pathway of necroptosis involving receptor-interacting protein kinases (RIP1 and RIP3) and mixed lineage kinase domain-like pseudokinase (MLKL) elicits neuroprotective and cardioprotective effects. These protective effects are evidenced by the reduction of infarct size, alleviation of neurological deficits, myocardial dysfunction, and adverse cardiac remodeling. Recently, in addition to RIPK1-RIPK3-MLKL canonical molecular signalling of necroptosis in cerebral and myocardial I/R injury, non-canonical pathways of necroptosis have been identified by showing that RIPK3 affects downstream molecules such as calmodulin-dependent protein kinase IIδ (CaMKIIδ), phosphoglycerate mutase 5 (PGAM5), dynamin-related protein 1 (Drp-1), apoptosis-inducing factor (AIF), xanthine oxidase and death-associated protein (DAXX). This review summarises and discusses evidence from in vitro and in vivo experimental models regarding the role of necroptosis in cerebral and myocardial I/R injury and the therapeutic effects of pharmacological agents and genetic modifications that suppress necroptosis on this injury.

___

  • 1. Eltzschig HK, Eckle T. Ischemia and reperfusion—from mechanism to translation. Nat Med. 2011;17(11):10.1038/nm.2507.
  • 2. Ojha N, Dhamoon AS. Myocardial Infarction. Içinde: StatPearls [Inter-net]. Treasure Island (FL): StatPearls Publishing; 2022 [a.yer 2022]. Eri-şim adresi: http://www.ncbi.nlm.nih.gov/books/NBK537076/
  • 3. Kumar A, Cannon CP. Acute coronary syndromes: diagnosis and mana-gement, part I. Mayo Clin Proc. 2009;84(10):917-38.
  • 4. DeSai C, Hays Shapshak A. Cerebral Ischemia. Içinde: StatPearls [In-ternet]. Treasure Island (FL): StatPearls Publishing; 2022 [a.yer 2022]. Erişim adresi: http://www.ncbi.nlm.nih.gov/books/NBK560510/
  • 5. Mandalaneni K, Rayi A, Jillella DV. Stroke Reperfusion Injury. Içinde: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 [a.yer 2022]. Erişim adresi: http://www.ncbi.nlm.nih.gov/books/NBK564350/
  • 6. Kosieradzki M, Rowiński W. Ischemia/reperfusion injury in kidney transplantation: mechanisms and prevention. Transplant Proc. Aralık 2008;40(10):3279-88.
  • 7. Ikhlas M, Atherton NS. Vascular Reperfusion Injury. Içinde: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2022 [a.yer 2022]. Erişim adresi: http://www.ncbi.nlm.nih.gov/books/NBK562210/
  • 8. Kurcer Z, Hekimoglu A, Aral F, Baba F, Sahna E. Effect of melatonin on epididymal sperm quality after testicular ischemia/reperfusion in rats. Fertil Steril. 2010;93(5):1545-9.
  • 9. Kurcer Z, Oguz E, Ozbilge H, Baba F, Aksoy N, Celik H, et al. Melatonin protects from ischemia/reperfusion-induced renal injury in rats: this ef-fect is not mediated by proinflammatory cytokines. J Pineal Res. 2007;43(2):172-8.
  • 10. Lutz J, Thürmel K, Heemann U. Anti-inflammatory treatment strate-gies for ischemia/reperfusion injury in transplantation. J Inflamm Lond Engl. 2010;7:27.
  • 11. Wu MY, Yiang GT, Liao WT, Tsai APY, Cheng YL, Cheng PW, et al. Current Mechanistic Concepts in Ischemia and Reperfusion Injury. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol. 2018;46(4):1650-67.
  • 12. Lefer DJ, Granger DN. Oxidative stress and cardiac disease. Am J Med. 2000;109(4):315-23.
  • 13. Boros P, Bromberg JS. New cellular and molecular immune pathways in ischemia/reperfusion injury. Am J Transplant Off J Am Soc Transplant Am Soc Transpl Surg. 2006;6(4):652-8.
  • 14. Özdemir S, Başoğlu T, Demir H, Durmuş Altun G, Özdemir E, Şen F, et al. Guidelines for Myocardial Viability Imaging with F-18 FDG. Nucl Med Semin. 2020;6(2):171-83.
  • 15. Zhang Q, Jia M, Wang Y, Wang Q, Wu J. Cell Death Mechanisms in Cerebral Ischemia-Reperfusion Injury. Neurochem Res. 2022;47(12):3525-42.
  • 16. Gottlieb RA. Cell death pathways in acute ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther. 2011;16(3-4):233-8.
  • 17. Lopez-Neblina F, Toledo AH, Toledo-Pereyra LH. Molecular biology of apoptosis in ischemia and reperfusion. J Investig Surg Off J Acad Surg Res. 2005;18(6):335-50.
  • 18. Degterev A, Huang Z, Boyce M, Li Y, Jagtap P, Mizushima N, et al. Chemical inhibitor of nonapoptotic cell death with therapeutic poten-tial for ischemic brain injury. Nat Chem Biol. 2005;1(2):112-9.
  • 19. Berghe TV, Linkermann A, Jouan-Lanhouet S, Walczak H, Vandenabee-le P. Regulated necrosis: the expanding network of non-apoptotic cell death pathways. Nat Rev Mol Cell Biol. 2014;15(2):135-47.
  • 20. Holler N, Zaru R, Micheau O, Thome M, Attinger A, Valitutti S, et al. Fas triggers an alternative, caspase-8-independent cell death pathway using the kinase RIP as effector molecule. Nat Immunol. 2000;1(6):489-95.
  • 21. Conrad M, Angeli JPF, Vandenabeele P, Stockwell BR. Regulated nec-rosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2016;15(5):348-66.
  • 22. Walczak H. TNF and ubiquitin at the crossroads of gene activation, cell death, inflammation, and cancer. Immunol Rev. 2011;244(1):9-28.
  • 23. Takaesu G, Surabhi RM, Park KJ, Ninomiya-Tsuji J, Matsumoto K, Gaynor RB. TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J Mol Biol. 2003;326(1):105-15.
  • 24. Guo X, Chen Y, Liu Q. Necroptosis in heart disease: Molecular mecha-nisms and therapeutic implications. J Mol Cell Cardiol. 2022;169:74-83.
  • 25. Moquin DM, McQuade T, Chan FKM. CYLD Deubiquitinates RIP1 in the TNFα-Induced Necrosome to Facilitate Kinase Activation and Prog-rammed Necrosis. PLOS ONE. 2013;8(10):e76841.
  • 26. Irmler M, Thome M, Hahne M, Schneider P, Hofmann K, Steiner V, et al. Inhibition of death receptor signals by cellular FLIP. Nature. 1997;388(6638):190-5.
  • 27. Wang L, Du F, Wang X. TNF-alpha induces two distinct caspase-8 activation pathways. Cell. 2008;133(4):693-703.
  • 28. Chen X, Wu JX, You XJ, Zhu HW, Wei JL, Xu MY. Cold ischemia-induced autophagy in rat lung tissue. Mol Med Rep. 2015;11(4):2513-9.
  • 29. Cho YS, Challa S, Moquin D, Genga R, Ray TD, Guildford M, et al. Phosphorylation-driven assembly of the RIP1-RIP3 complex regulates programmed necrosis and virus-induced inflammation. Cell. 2009;137(6):1112-23.
  • 30. Oberst A, Dillon CP, Weinlich R, McCormick LL, Fitzgerald P, Pop C, et al. Catalytic activity of the caspase-8-FLIP(L) complex inhibits RIPK3-dependent necrosis. Nature. 2011;471(7338):363-7.
  • 31. Cai Z, Jitkaew S, Zhao J, Chiang HC, Choksi S, Liu J, et al. Plasma membrane translocation of trimerized MLKL protein is required for TNF-induced necroptosis. Nat Cell Biol. 2014;16(1):55-65.
  • 32. Chen X, Li W, Ren J, Huang D, He WT, Song Y, et al. Translocation of mixed lineage kinase domain-like protein to plasma membrane leads to necrotic cell death. Cell Res. 2014;24(1):105-21.
  • 33. Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, et al. Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 2014;54(1):133-46.
  • 34. Jouan-Lanhouet S, Riquet F, Duprez L, Vanden Berghe T, Takahashi N, Vandenabeele P. Necroptosis, in vivo detection in experimental disea-se models. Semin Cell Dev Biol. 2014;35:2-13.
  • 35. Chan FKM, Luz NF, Moriwaki K. Programmed necrosis in the cross talk of cell death and inflammation. Annu Rev Immunol. 2015;33:79-106.
  • 36. Takahashi N, Duprez L, Grootjans S, Cauwels A, Nerinckx W, DuHa-daway JB, et al. Necrostatin-1 analogues: critical issues on the specifi-city, activity and in vivo use in experimental disease models. Cell Death Dis. 2012;3(11):e437.
  • 37. Newton K, Dugger DL, Wickliffe KE, Kapoor N, de Almagro MC, Vucic D, et al. Activity of protein kinase RIPK3 determines whether cells die by necroptosis or apoptosis. Science. 2014;343(6177):1357-60.
  • 38. Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, et al. RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell. 2014;56(4):481-95.
  • 39. Zhou T, Wang Q, Phan N, Ren J, Yang H, Feldman CC, et al. Identifica-tion of a novel class of RIP1/RIP3 dual inhibitors that impede cell death and inflammation in mouse abdominal aortic aneurysm models. Cell Death Dis. 2019;10(3):1-15.
  • 40. Maslov LN, Popov SV, Naryzhnaya NV, Mukhomedzyanov AV, Kurbatov BK, Derkachev IA, et al. The regulation of necroptosis and perspectives for the development of new drugs preventing ischemic/reperfusion of cardiac injury. Apoptosis. 2022;27(9):697-719.
  • 41. Fauster A, Rebsamen M, Huber KVM, Bigenzahn JW, Stukalov A, Lar-deau CH, et al. A cellular screen identifies ponatinib and pazopanib as inhibitors of necroptosis. Cell Death Dis. 2015;6(5):e1767.
  • 42. In EJ, Lee Y, Koppula S, Kim TY, Han JH, Lee KH, et al. Identification and Characterization of NTB451 as a Potential Inhibitor of Necroptosis. Molecules. 2018;23(11):2884.
  • 43. Jadhav AP, Desai SM, Jovin TG. Indications for Mechanical Thrombec-tomy for Acute Ischemic Stroke: Current Guidelines and Beyond. Neu-rology. 2021;97(20 Supplement 2):S126-36.
  • 44. Yao D, Zhang S, Hu Z, Luo H, Mao C, Fan Y, et al. CHIP ameliorates cerebral ischemia-reperfusion injury by attenuating necroptosis and inflammation. Aging. 2021;13(23):25564-77.
  • 45. Rodrigo R, Fernández-Gajardo R, Gutiérrez R, Matamala JM, Carrasco R, Miranda-Merchak A, et al. Oxidative stress and pathophysiology of ischemic stroke: novel therapeutic opportunities. CNS Neurol Disord Drug Targets. 2013;12(5):698-714.
  • 46. Surinkaew P, Sawaddiruk P, Apaijai N, Chattipakorn N, Chattipakorn SC. Role of microglia under cardiac and cerebral ischemia/reperfusion (I/R) injury. Metab Brain Dis. 2018;33(4):1019-30.
  • 47. Vacher H, Mohapatra DP, Trimmer JS. Localization and targeting of voltage-dependent ion channels in mammalian central neurons. Physiol Rev. 2008;88(4):1407-47.
  • 48. Vieira M, Fernandes J, Carreto L, Anuncibay-Soto B, Santos M, Han J, et al. Ischemic insults induce necroptotic cell death in hippocampal ne-urons through the up-regulation of endogenous RIP3. Neurobiol Dis. 2014;68:26-36.
  • 49. Zhan L, Lu Z, Zhu X, Xu W, Li L, Li X, et al. Hypoxic preconditioning attenuates necroptotic neuronal death induced by global cerebral isc-hemia via Drp1-dependent signaling pathway mediated by CaMKIIα inactivation in adult rats. FASEB J Off Publ Fed Am Soc Exp Biol. 2019;33(1):1313-29.
  • 50. Akçay G. Cerebral Ischemia Model Created by Transient Middle Cereb-ral Artery Occlusion. Turk Bull Hyg Exp Biol. 2021;78(2):205-18.
  • 51. Li W, Gou X, Xu D, Zhou L, Li F, Ye A, et al. Therapeutic effects of JLX001 on neuronal necroptosis after cerebral ischemia-reperfusion in rats. Exp Brain Res. 2022;240(12):3167-82.
  • 52. Chen Y, Zhang L, Yu H, Song K, Shi J, Chen L, et al. Necrostatin-1 Imp-roves Long-term Functional Recovery Through Protecting Oligodend-rocyte Precursor Cells After Transient Focal Cerebral Ischemia in Mice. Neuroscience. 2018;371:229-41.
  • 53. Xu X, Chua KW, Chua CC, Liu CF, Hamdy RC, Chua BHL. Synergistic protective effects of humanin and necrostatin-1 on hypoxia and ische-mia/reperfusion injury. Brain Res. 2010;1355:189-94.
  • 54. Naito MG, Xu D, Amin P, Lee J, Wang H, Li W, et al. Sequential activa-tion of necroptosis and apoptosis cooperates to mediate vascular and neural pathology in stroke. Proc Natl Acad Sci U S A. 2020;117(9):4959-70.
  • 55. Yin B, Xu Y, Wei RL, He F, Luo BY, Wang JY. Inhibition of receptor-interacting protein 3 upregulation and nuclear translocation involved in Necrostatin-1 protection against hippocampal neuronal programmed necrosis induced by ischemia/reperfusion injury. Brain Res. 2015;1609:63-71.
  • 56. Deng XX, Li SS, Sun FY. Necrostatin-1 Prevents Necroptosis in Brains after Ischemic Stroke via Inhibition of RIPK1-Mediated RIPK3/MLKL Signaling. Aging Dis. 2019;10(4):807-17.
  • 57. Zhou Y, Zhou B, Tu H, Tang Y, Xu C, Chen Y, et al. The degradation of mixed lineage kinase domain-like protein promotes neuroprotection af-ter ischemic brain injury. Oncotarget. 2017;8(40):68393-401.
  • 58. Zhou Y, Zhou B, Tu H, Tang Y, Xu C, Chen Y, et al. The degradation of mixed lineage kinase domain-like protein promotes neuroprotection af-ter ischemic brain injury. Oncotarget. 2017;8(40):68393-401.
  • 59. Deng XX, Li SS, Sun FY. Necrostatin-1 Prevents Necroptosis in Brains after Ischemic Stroke via Inhibition of RIPK1-Mediated RIPK3/MLKL Signaling. Aging Dis. 2019;10(4):807-17.
  • 60. Deng YP, Sun Y, Hu L, Li ZH, Xu QM, Pei YL, et al. Chondroitin sulfate proteoglycans impede myelination by oligodendrocytes after perinatal white matter injury. Exp Neurol. 2015;269:213-23.
  • 61. Wang Z, Jiang H, Chen S, Du F, Wang X. The mitochondrial phosphata-se PGAM5 functions at the convergence point of multiple necrotic de-ath pathways. Cell. 2012;148(1-2):228-43.
  • 62. Yang R, Hu K, Chen J, Zhu S, Li L, Lu H, et al. Necrostatin-1 protects hippocampal neurons against ischemia/reperfusion injury via the RIP3/DAXX signaling pathway in rats. Neurosci Lett. 2017;651:207-15.
  • 63. Jung YS, Kim HY, Lee YJ, Kim E. Subcellular localization of Daxx deter-mines its opposing functions in ischemic cell death. FEBS Lett. 2007;581(5):843-52.
  • 64. Hu W, Wu X, Yu D, Zhao L, Zhu X, Li X, et al. Regulation of JNK signaling pathway and RIPK3/AIF in necroptosis-mediated global cerebral isc-hemia/reperfusion injury in rats. Exp Neurol. 2020;331:113374.
  • 65. Xu Y, Wang J, Song X, Qu L, Wei R, He F, et al. RIP3 induces ischemic neuronal DNA degradation and programmed necrosis in rat via AIF. Sci Rep. 2016;6:29362.
  • 66. Li W, Liu J, Chen JR, Zhu YM, Gao X, Ni Y, et al. Neuroprotective Effects of DTIO, A Novel Analog of Nec-1, in Acute and Chronic Stages After Ischemic Stroke. Neuroscience. 2018;390:12-29.
  • 67. Li X, Cheng S, Hu H, Zhang X, Xu J, Wang R, et al. Progranulin protects against cerebral ischemia-reperfusion (I/R) injury by inhibiting necrop-tosis and oxidative stress. Biochem Biophys Res Commun. 2020;521(3):569-76.
  • 68. Qu Y, Shi J, Tang Y, Zhao F, Li S, Meng J, et al. MLKL inhibition attenua-tes hypoxia-ischemia induced neuronal damage in developing brain. Exp Neurol. 2016;279:223-31.
  • 69. Malireddi RKS, Kesavardhana S, Kanneganti TD. ZBP1 and TAK1: Mas-ter Regulators of NLRP3 Inflammasome/Pyroptosis, Apoptosis, and Necroptosis (PAN-optosis). Front Cell Infect Microbiol. 2019;9:406.
  • 70. Yan WT, Yang YD, Hu XM, Ning WY, Liao LS, Lu S, et al. Do pyroptosis, apoptosis, and necroptosis (PANoptosis) exist in cerebral ischemia? Evidence from cell and rodent studies. Neural Regen Res. 2022;17(8):1761-8.
  • 71. Shu J, Yang L, Wei W, Zhang L. Identification of programmed cell de-ath-related gene signature and associated regulatory axis in cerebral ischemia/reperfusion injury. Front Genet [İnternet]. 2022 [a.yer 2023];13. Erişim adresi: https://www.frontiersin.org/articles/10.3389/fgene.2022.934154
  • 72. Zhu H, Sun A. Programmed necrosis in heart disease: Molecular mec-hanisms and clinical implications. J Mol Cell Cardiol. 2018;116:125-34.
  • 73. Halestrap AP, Richardson AP. The mitochondrial permeability transi-tion: a current perspective on its identity and role in ischae-mia/reperfusion injury. J Mol Cell Cardiol. 2015;78:129-41.
  • 74. Xia Z, Li H, Irwin MG. Myocardial ischaemia reperfusion injury: the challenge of translating ischaemic and anaesthetic protection from animal models to humans. Br J Anaesth. 2016;117 Suppl 2:ii44-62.
  • 75. Buja LM. Myocardial ischemia and reperfusion injury. Cardiovasc Pathol Off J Soc Cardiovasc Pathol. 2005;14(4):170-5.
  • 76. Tani M, Neely JR. Role of intracellular Na+ in Ca2+ overload and dep-ressed recovery of ventricular function of reperfused ischemic rat he-arts. Possible involvement of H+-Na+ and Na+-Ca2+ exchange. Circ Res. 1989;65(4):1045-56.
  • 77. Ibáñez B, Heusch G, Ovize M, Van de Werf F. Evolving therapies for myocardial ischemia/reperfusion injury. J Am Coll Cardiol. 2015;65(14):1454-71.
  • 78. Chen S, Li S. The Na+/Ca2+ exchanger in cardiac ischemia/reperfusion injury. Med Sci Monit Int Med J Exp Clin Res. 2012;18(11):RA161-165.
  • 79. Fieni F, Johnson DE, Hudmon A, Kirichok Y. Mitochondrial Ca2+ Unipor-ter and CaMKII in heart. Nature. 2014;513(7519):E1-2.
  • 80. Yu J, Wu J, Xie P, Maimaitili Y, Wang J, Xia Z, et al. Sevoflurane post-conditioning attenuates cardiomyocyte hypoxia/reoxygenation injury via restoring mitochondrial morphology. PeerJ. 2016;4:e2659.
  • 81. Cadenas S, Aragonés J, Landázuri MO. Mitochondrial reprogramming through cardiac oxygen sensors in ischaemic heart disease. Cardiovasc Res. 2010;88(2):219-28.
  • 82. Cain BS, Meldrum DR, Dinarello CA, Meng X, Joo KS, Banerjee A, et al. Tumor necrosis factor-alpha and interleukin-1beta synergistically dep-ress human myocardial function. Crit Care Med. 1999;27(7):1309-18.
  • 83. Kleinbongard P, Schulz R, Heusch G. TNFα in myocardial ische-mia/reperfusion, remodeling and heart failure. Heart Fail Rev. 2011;16(1):49-69.
  • 84. Toldo S, Mauro AG, Cutter Z, Abbate A. Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol - Heart Circ Physiol. 2018;315(6):H1553-68.
  • 85. Tian H, Xiong Y, Xia Z. Resveratrol ameliorates myocardial ische-mia/reperfusion induced necroptosis through inhibition of the Hippo pathway. J Bioenerg Biomembr. 2023;55(1):59-69.
  • 86. Birnbaum Y, Ye R, Chen H, Carlsson L, Whatling C, Fjellström O, et al. Recombinant Apyrase (AZD3366) Against Myocardial Reperfusion Injury. Cardiovasc Drugs Ther. 2022;
  • 87. Chen H, Tang LJ, Tu H, Zhou YJ, Li NS, Luo XJ, et al. Arctiin protects rat heart against ischemia/reperfusion injury via a mechanism involving reduction of necroptosis. Eur J Pharmacol. 2020;875:173053.
  • 88. Smith CCT, Davidson SM, Lim SY, Simpkin JC, Hothersall JS, Yellon DM. Necrostatin: a potentially novel cardioprotective agent? Cardiovasc Drugs Ther. 2007;21(4):227-33.
  • 89. Koudstaal S, Oerlemans MIFJ, Van der Spoel TIG, Janssen AWF, Hoefer IE, Doevendans PA, et al. Necrostatin-1 alleviates reperfusion injury following acute myocardial infarction in pigs. Eur J Clin Invest. 2015;45(2):150-9.
  • 90. He F, Zheng G, Hu J, Ge W, Ji X, Bradley JL, et al. Necrosulfonamide improves post-resuscitation myocardial dysfunction via inhibiting pyroptosis and necroptosis in a rat model of cardiac arrest. Eur J Pharmacol. 2022;926:175037.
  • 91. Li Y, Hao H, Yu H, Yu L, Ma H, Zhang H. Ginsenoside Rg2 Ameliorates Myocardial Ischemia/Reperfusion Injury by Regulating TAK1 to Inhibit Necroptosis. Front Cardiovasc Med. 2022;9:824657.
  • 92. Wang K, Liu F, Liu CY, An T, Zhang J, Zhou LY, et al. The long noncoding RNA NRF regulates programmed necrosis and myocardial injury during ischemia and reperfusion by targeting miR-873. Cell Death Differ. 2016;23(8):1394-405.
  • 93. Qin D, Wang X, Li Y, Yang L, Wang R, Peng J, et al. MicroRNA-223-5p and -3p Cooperatively Suppress Necroptosis in Ischemic/Reperfused Hearts. J Biol Chem. 2016;291(38):20247-59.
  • 94. Zhang DY, Wang BJ, Ma M, Yu K, Zhang Q, Zhang XW. MicroRNA-325-3p protects the heart after myocardial infarction by inhibiting RIPK3 and programmed necrosis in mice. BMC Mol Biol. 2019;20(1):17.
  • 95. Wang JX, Zhang XJ, Li Q, Wang K, Wang Y, Jiao JQ, et al. MicroRNA-103/107 Regulate Programmed Necrosis and Myocardial Ische-mia/Reperfusion Injury Through Targeting FADD. Circ Res. 2015;117(4):352-63.
  • 96. Gao XQ, Liu CY, Zhang YH, Wang YH, Zhou LY, Li XM, et al. The circRNA CNEACR regulates necroptosis of cardiomyocytes through Foxa2 supp-ression. Cell Death Differ. 2022;29(3):527-39.
  • 97. Hou H, Wang Y, Li Q, Li Z, Teng Y, Li J, et al. The role of RIP3 in cardi-omyocyte necrosis induced by mitochondrial damage of myocardial ischemia-reperfusion. Acta Biochim Biophys Sin. 2018;50(11):1131-40.
  • 98. Horvath C, Young M, Jarabicova I, Kindernay L, Ferenczyova K, Ra-vingerova T, et al. Inhibition of Cardiac RIP3 Mitigates Early Reperfu-sion Injury and Calcium-Induced Mitochondrial Swelling without Alte-ring Necroptotic Signalling. Int J Mol Sci. 2021;22(15):7983.
  • 99. Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, et al. CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 2016;22(2):175-82.
  • 100. Szobi A, Rajtik T, Carnicka S, Ravingerova T, Adameova A. Mitigation of postischemic cardiac contractile dysfunction by CaMKII inhibition: ef-fects on programmed necrotic and apoptotic cell death. Mol Cell Bioc- hem. 2014;388(1):269-76.
  • 101. Zhu P, Hu S, Jin Q, Li D, Tian F, Toan S, et al. Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: A mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biol. 2018;16:157-68.
  • 102. Marunouchi T, Ito T, Onda S, Kyo L, Takahashi K, Uchida M, et al. Effects of 17-AAG on the RIP1/RIP3/MLKL pathway during the deve-lopment of heart failure following myocardial infarction in rats. J Phar-macol Sci. 2021;147(2):192-9.
  • 103. Luedde M, Lutz M, Carter N, Sosna J, Jacoby C, Vucur M, et al. RIP3, a kinase promoting necroptotic cell death, mediates adverse remodel-ling after myocardial infarction. Cardiovasc Res. 2014;103(2):206-16.
  • 104. Karunakaran D, Nguyen MA, Geoffrion M, Vreeken D, Lister Z, Cheng HS, et al. RIPK1 Expression Associates With Inflammation in Early At-herosclerosis in Humans and Can Be Therapeutically Silenced to Redu-ce NF-κB Activation and Atherogenesis in Mice. Circulation. 12 Ocak 2021;143(2):163-77.
  • 105. Koshinuma S, Miyamae M, Kaneda K, Kotani J, Figueredo VM. Combi-nation of necroptosis and apoptosis inhibition enhances cardioprotec-tion against myocardial ischemia-reperfusion injury. J Anesth. 2014;28(2):235-41.
  • 106. Tu H, Zhou YJ, Tang LJ, Xiong XM, Zhang XJ, Ali Sheikh MS, et al. Com-bination of ponatinib with deferoxamine synergistically mitigates isc-hemic heart injury via simultaneous prevention of necroptosis and fer-roptosis. Eur J Pharmacol. 2021;898:173999.
Harran Üniversitesi Tıp Fakültesi Dergisi-Cover
  • ISSN: 1304-9623
  • Yayın Aralığı: Yılda 3 Sayı
  • Başlangıç: 2004
  • Yayıncı: Harran Üniversitesi Tıp Fakültesi Dekanlığı