Karnabahar ve brokoli fidelerine yapılan melatonin uygulamalarının tuz stresi üzerine etkisi

Bu çalışma serin iklim sebze yetiştiriciliğinde önemli bir yere sahip olan karnabahar ve brokoliye dışarıdan yapılan melatonin (MEL) uygulamalarının tuz stresi üzerine olası etkilerini belirleyebilmek amacıyla gerçekleştirilmiştir. Bu sebeple 4-6 gerçek yapraklı karnabahar ve brokoli fidelerine farklı dozlarda MEL (0, 5 ve 10 μM MEL) içeren sulu çözelti topraktan uygulanmıştır. Tesadüf parselleri deneme desenine göre 3 tekerrürlü olarak kurulan denemede stres etkilerini belirleyebilmek amacıyla fidelerde fiziksel (fide ağırlıkları, boyu, çapı ve yaprak alanı) ve biyokimyasal (elektriki iletkenlik, klorofil ve karotenoid içeriği, prolin, melondialdehit ve toplam fenolik madde içeriği) analizler gerçekleştirilmiştir. Analizler sonucunda stres altındaki fidelere dışarıdan yapılan MEL uygulamalarının stresin olumsuz etkilerini azaltarak boy, çap, ağırlık, klorofil, karetenoid, antosiyanin ve fenolik madde içeriğinde iyileşmeler sağladığı gözlemlenmiştir. Sonuç olarak dışarıdan yapılan MEL uygulamaları tuz stresinin olumsuz etkilerini azaltmada etkili olmuş, bununla birlikte karnabaharda 5μM MEL uygulaması, brokoli fidelerinde ise 5μM-10 μM MEL uygulamaları uygun dozlar olarak belirlenmiştir.

The effect of melatonin treatments on cauliflower and broccoli seedlings on salt stress

This study was carried out to determine the possible effects of exogen melatonin (MEL) treatments on salt stress in cauliflower and broccoli, which have a significant position among cool region vegetables. For that reason, an aqueous solution containing at different concentrations MEL (0, 5, and 10 μM MEL) were applied to the cauliflower and broccoli seedlings with 4-6 true leaves from the soil. In this experiment, which was established with 3 replications according to the randomized plots trial design, physical (seedling weight, height, diameter, and leaf area) and biochemical (electrical conductivity, chlorophyll and carotenoid content, proline, malondialdehyde, and total phenolic substance content) analyzes were carried out to determine the stress effects on the seedlings. As a result of the analyzes, it was observed that exogen MEL treatments to the seedlings under stress reduced the unfavorable effects of stress and provided improvements in height, diameter, weight, chlorophyll, carotenoid, anthocyanin, and phenolic substance content. As a result, exogen MEL treatments were very efficient in reducing the unfavorable effects of salt stress. However, 5μM MEL treatment in cauliflower and 5 and 10 μM MEL tratments in broccoli seedlings were determined as appropriate concentrations.

___

Ahmad, S., Cui, W., Kamran, M., Ahmad, I., Meng, X., Wu, X., Su, W., Javed, T., El-Serehy A. H., Jia, Z., & Han, Q. (2021). Exogenous application of melatonin induces tolerance to salt stress by improving the photosynthetic efficiency and antioxidant defense system of maize seedling. Journal of Plant Growth Regulation, 40(3), 1270-1283. https://doi.org/10.1007/s00344-020-10187-0

Altaf, M. A., Shahid, R., Ren, M. X., Naz, S., Altaf, M. M., Qadir, A., Anwar, M., Shakoor, A. & Hayat, F. (2020). Exogenous melatonin enhances salt stress tolerance in tomato seedlings. Biologia Plantarum, 64, 604-615.

Arnao, M.B., Hernandez-Ruiz, J. (2014). Melatonin: plant growth regulator and/or biostimulator during stress? Trends in Plant Science 19 (12): 789-797. doi: https://doi.org/10.1016/j.tplants.2014.07.006.

Arnao, M.B., Hernandez-Ruiz, J., 2015a. Functions of melatonin in plants: a review. Journal of Pineal Research, 59: 133–150.

Arnao, M.B., Hernandez-Ruiz, J. 2015b. Phytomelatonin: searching for plants with high levels for use as natural nutraceutical. Studies in Natural Products Chemistry, 46: 523-549.

Arnao, M. B., Hernández-Ruiz, J. 2020. “Is phytomelatonin a new plant hormone?”, Agronomy, 101, 95. https://doi.org/10.3390/agronomy10010095

Ashraf, M. F. M. R., & Foolad, M. R. (2007). Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany, 59(2), 206-216. https://doi.org/10.1016/j.envexpbot.2005.12.006

Balkaya, A (2011). Lahanagil Yetiştiriciliği. Bahçe Tarımı 2. Anadolu Üniversitesi Açıköğretim Fakültesi Yayın No: 1355, 148-150.

Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39(1), 205-207. https://doi.org/10.1007/BF000 18060

Boursiac, Y., Chen, S., Luu, D. T., Sorieul, M., van den Dries, N., & Maurel, C. (2005). Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant physiology, 139(2), 790-805. https://doi.org/10.1104/pp.105.065029

Campos, C. N., Ávila, R. G., de Souza, K. R. D., Azevedo, L. M., & Alves, J. D. (2019). Melatonin reduces oxidative stress and promotes drought tolerance in young Coffea arabica L. plants. Agricultural Water Management, 211, 37-47.

Çulha, Ş., & Çakırlar, H. (2011). Tuzluluğun bitkiler üzerine etkileri ve tuz tolerans mekanizmaları. Afyon Kocatepe Üniversitesi Fen ve Mühendislik Bilimleri Dergisi, 11(2), 11-34. Retrieved from https://dergipark.org.tr/en/pub/akufemubid/issue/1591/19755

Eryılmaz, F. (2006). The relationships between salt stress and anthocyanin content in higher plants. Biotechnology & Biotechnological Equipment, 20(1), 47-52.

Günay, A. (1984). Sebzecilik: Özel Sebze Yetistiriciligi. Çag Matbaası, Ankara, 312.

Güneş, A., Inal, A., Bagci, E. G., & Pilbeam, D. J. (2007). Silicon-mediated changes of some physiological and enzymatic parameters symptomatic for oxidative stress in spinach and tomato grown in sodic-B toxic soil. Plant and Soil, 290(1), 103-114. https://doi.org/10.1007/s11104-006-9137-9

Hernandez, I. G., Gomez, F. J. V., Cerutti, S., Arana, M. V., & Silva, M. F. (2015). Melatonin in Arabidopsis thaliana acts as plant growth regulator at low concentrations and preserves seed viability at high concentrations. Plant Physiology and Biochemistry, 94, 191-196. https://doi.org/10.1016/j.plaphy.2015.06.011

Horie, T., Kaneko, T., Sugimoto, G., Sasano, S., Panda, S. K., Shibasaka, M., & Katsuhara, M. (2011). Mechanisms of water transport mediated by PIP aquaporins and their regulation via phosphorylation events under salinity stress in barley roots. Plant and Cell Physiology, 52(4), 663-675. https://doi.org/10.1093/pcp/pcr027

Jiang, C., Cui, Q., Feng, K., Xu, D., Li, C., & Zheng, Q. (2016). Melatonin improves antioxidant capacity and ion homeostasis and enhances salt tolerance in maize seedlings. Acta physiologiae plantarum, 38(4), 82. https://doi.org/10.1007/s11738-016-2101-2

Karaca, A. 2013. “Dışarıdan yapılan melatonin uygulamaları ile biberde çimlenme sırasında üşüme stresine karşı toleransın arttırılması”, Kahramanmaraş Sütçü İmam Üniversitesi Fen Bilimleri Enstitüsü, Bahçe Bitkileri Anabilimdalı Yüksek Lisans Tezi, Kahramanmaraş.

Ke, Q., Ye, J., Wang, B., Ren, J., Yin, L., Deng, X., & Wang, S. (2018). Melatonin mitigates salt stress in wheat seedlings by modulating polyamine metabolism. Frontiers in Plant Science, 9, 914.

Kirk, J. T. O., & Allen, R. L. (1965). Dependence of chloroplast pigment synthesis on protein synthesis: effect of actidione. Biochemical and Biophysical Research Communications, 21(6), 523-530. https://doi.org/10.1016/0006-291X(65)90516-4

Korkmaz, A., Değer, Ö., Szafrańska, K., Köklü, Ş., Karaca, A., Yakupoğlu, G., & Kocacinar, F. (2021). Melatonin effects in enhancing chilling stress tolerance of pepper. Scientia Horticulturae, 289, 110434.

Korkmaz, A., Uzunlu, M., & Demirkiran, A. R. (2007). Treatment with acetyl salicylic acid protects muskmelon seedlings against drought stress. Acta Physiologiae Plantarum, 29(6), 503-508. https://doi.org/10.1007/s11738-007-0060-3

Korkmaz, A., Yakupoğlu, G., Köklü, Ş., Cuci, Y., & Kocacinar, F. (2017). Determining diurnal and seasonal changes in melatonin andtryptophan contents of eggplant (Solanum melongena L.). Turkish Journal of Botany, 41(4), 356-366. https://doi.org/10.3906/bot-1611-48

Köklü, Ş. (2016). Melatoninin biber tohumlarının yaşlanması üzerine etkilerinin incelenmesi. KSÜ. Fen Bil. Ens., Bahçe Bitkileri Bölümü, Yüksek Lisans Tezi, 98s.

Lazár, D., Murch, S. J., Beilby, M. J., & Al Khazaaly, S. (2013). Exogenous melatonin affects photosynthesis in characeae Chara australis. Plant Signaling & Behavior, 8(3), 23279.

Li, C., Wang, P., Wei, Z., Liang, D., Liu, C., Yin, L., ... & Ma, F. (2012). The mitigation effects of exogenous melatonin on salinity‐induced stress in Malus hupehensis. Journal of Pineal Research, 53(3), 298-306. https://doi.org/10.1111/j.1600-079X.2012.00999.x

Li, C., Tan, D. X., Liang, D., Chang, C., Jia, D., & Ma, F. (2015). Melatonin mediates the regulation of ABA metabolism, free-radical scavenging, and stomatal behaviour in two Malus species under drought stress. Journal of Experimental Botany, 66(3), 669-680.

Li, H., Chang, J., Chen, H., Wang, Z., Gu, X., Wei, C., Zhang, Y., Ma, J., Yang, J. & Zhang, X. (2017). Exogenous melatonin confers salt stress tolerance to watermelon by improving photosynthesis and redox homeostasis. Frontiers in plant science, 8, 295.

Li, J., Liu, J., Zhu, T., Zhao, C., Li, L., & Chen, M. (2019). The role of melatonin in salt stress responses. International journal of molecular sciences, 20(7), 1735.

Liang, W., Ma, X., Wan, P., & Liu, L. (2018). Plant salt-tolerance mechanism: A review. Biochemical and biophysical research communications, 495(1), 286-291. https://doi.org/10.1016/j.bbrc.2017.11.043

Lutts, S., Kinet, J. M., & Bouharmont, J. (1996). NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Annals of botany, 78(3), 389-398.

Martínez-Ballesta, M. C., Aparicio, F., Pallás, V., Martínez, V., & Carvajal, M. (2003). Influence of saline stress on root hydraulic conductance and PIP expression in Arabidopsis. Journal of plant physiology, 160(6), 689-697. https://doi.org/10.1078/017 6-1617-00861

Martínez-Ballesta, M., Martínez, V., & Carvajal, M. (2000). Regulation of water channel activity in whole roots and in protoplasts from roots of melon plants grown under saline conditions. Functional Plant Biology, 27(7), 685-691. https://doi.org/10.1071/PP99203

Martinez, V., Nieves-Cordones, M., Lopez-Delacalle, M., Rodenas, R., Mestre, T. C., Garcia-Sanchez, F., Rubio, F., Nortes, P.A., Mittler, R., & Rivero, R. M. (2018). Tolerance to stress combination in tomato plants: new insights in the protective role of melatonin. Molecules, 23(3), 535.

Munns, R., James, R. A., & Läuchli, A. (2006). Approaches to increasing the salt tolerance of wheat and other cereals. Journal of experimental botany, 57(5), 1025-1043. https://doi.org/10.1093/jxb/erj100

Munns, R., & Tester, M. (2008). Mechanisms of salinity tolerance. Annual Review of Plant Biology, 59, 651-681. https://doi.org/10.1146/annurev.arplant. 59.032607.092911

Nawaz, M. A., Huang, Y., Bie, Z., Ahmed, W., Reiter, R. J., Niu, M., & Hameed, S. (2016). Melatonin: current status and future perspectives in plant science. Frontiers in plant science, 6, 1230.

Nguyen, H. C., Lin, K. H., Ho, S. L., Chiang, C. M., & Yang, C. M. (2018). Enhancing the abiotic stress tolerance of plants: from chemical treatment to biotechnological approaches. Physiologia plantarum, 164(4), 452-466. https://doi.org/10.1111/ppl.128 12.

Pastori , G. M., & Foyer, C. H. (2002). Common components, networks, and pathways of cross-tolerance to stress. The central role of “redox” and abscisic acid-mediated controls. Plant physiology, 129(2), 460-468. https://doi.org/10.1104/pp.011021

Park, H. S., Kazerooni, E. A., Kang, S. M., Al-Sadi, A. M., & Lee, I. J. (2021). Melatonin enhances the tolerance and recovery mechanisms in Brassica juncea (L.) Czern. under saline conditions. Frontiers in Plant Science, 12. https://doi.org/10.3389/fpls.2021.593 717

Quamruzzaman, M., Manik, S. M., Shabala, S., & Zhou, M. (2021). Improving Performance of Salt-Grown Crops by Exogenous Application of Plant Growth Regulators. Biomolecules, 11(6), 788. https://doi.org/10.3390/biom11060788

Reiter, R. J., Tan, D. X., Zhou, Z., Cruz, M. H. C., Fuentes-Broto, L., Galano, A. 2015. Phytomelatonin: assisting plants to survive and thrive. Molecules, 20: 7396-7437.Sağlam, K. B. M. (2005). Tekirdağ ili topraklarının mineralize olan azot miktarları ile mineralizasyon kapasiteleri üzerinde bir araştırma. Tekirdağ Ziraat Fakültesi Dergisi, 2(1), 89-101.

Shi, H., Tan, D.X., Reiter, R.J., Ye, T., Yang, F., Chan, Z. 2015b. Melatonin induces class A1 heat shock factors (HSFA1s) and their possible involvement of thermotolerance in Arabidopsis. Journal of Pineal Research, 58: 335–342.

Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. American journal of Enology and Viticulture, 16(3), 144-158.

Sun Q, Zhang N, Wang J, Zhang H, Li D, Shi J, Li R, Weeda S, Zhao B, Ren S, Guo YD (2015). Melatonin promotes ripening and improves quality of tomato fruit during postharvest life. Journal of Experimental Botany, 66 (3): 657-668. doi: https://doi.org/10.1093/jxb/eru332.

Szafrańska, K., Reiter, R. J., & Posmyk, M. M. (2017). Melatonin improves the photosynthetic apparatus in pea leaves stressed by paraquat via chlorophyll breakdown regulation and its accelerated de novo synthesis. Frontiers in plant science, 8, 878. https://doi.org/10.3389/fpls.2017.00878

TÜİK (2019): Bitkisel istatistik verileri. www.tuik.gov.tr Erişim: Nisan 2020.

TÜİK, (2020). Bitkisel yetiştiricilik istatistik verileri https://biruni.tuik.gov.tr/medas/?kn=92&locale=tr Erişim tarihi: 22.11.2021.

Wang, L. Y., Liu, J. L., Wang, W. X., & Sun, Y. (2016). Exogenous melatonin improves growth and photosynthetic capacity of cucumber under salinity-induced stress. Photosynthetica, 54(1), 19-27.

Weeda, S., Zhang, N., Zhao, X., Ndip, G., Guo, Y., Buck, G. A., Fu, C. & Ren, S. (2014). Arabidopsis transcriptome analysis reveals key roles of melatonin in plant defense systems. PloS one, 9(3), e93462. https://doi.org/10.1371/journal.pone.0093462

Yakupoğlu, G. (2016). Patlıcan (Solanum melongena L.)’da Melatonin İçeriğinin ve Üşüme Stresine Karşı Etkisinin Belirlenmesi. KSÜ. Fen Bil. Ens., Bahçe Bitkileri Bölümü, Doktora Lisans Tezi, 103s.

Yakupoğlu, G. (2020). Biberde Tuz Stresine Karşı Melatonin Uygulamasının Bazı Fide Özellikleri Üzerine Etkisi. Erciyes Üniversitesi Fen Bilimleri Enstitüsü Fen Bilimleri Dergisi, 36(1), 76-81.

Yakupoglu, G., Koklu, S., Karaca, A., Duver, E., Reiter, R. J., & Korkmaz, A. (2021). Fluctuations in melatonin content and its effects on the ageing process of lettuce seeds during storage. Acta Scientiarum Polonorum. Hortorum Cultus, 20(3). https://doi.org/ 10.24326/asphc.2021.3.10

Yin, L., Li, M., Ke, X., Li, C., Zou, Y., Liang, D., & Ma, F. (2013). Evaluation of Malus germplasm resistance to Marssonina apple blotch. European journal of plant pathology, 136(3), 597-602. https://doi.org/10.1111/jpi.12038

Zhang, J. H., Huang, W. D., Liu, Y. P., & Pan, Q. H. (2005). Effects of temperature acclimation pretreatment on the ultrastructure of mesophyll cells in young grape plants (Vitis vinifera L. cv. Jingxiu) under cross‐temperature stresses. Journal of Integrative Plant Biology, 47(8), 959-970. https://doi.org/10.1111/j.1744-7909.2005.00109.x

Zhang, N., Sun, Q., Zhang, H., Cao, Y., Weeda, S., Ren, S., & Guo, Y. D. (2015). Roles of melatonin in abiotic stress resistance in plants. Journal of Experimental Botany, 66(3), 647-656.

Zhang, T., Shi, Z., Zhang, X., Zheng, S., Wang, J., & Mo, J. (2020). Alleviating effects of exogenous melatonin on salt stress in cucumber. Scientia Horticulturae, 262, 109070.

Zhao, L., An, R., Yang, Y., Yang, X., Liu, H., Yue, L., Li, X., Lin, Y., Reiter, R. J. & Qu, Y. (2015). Melatonin alleviates brain injury in mice subjected to cecal ligation and puncture via attenuating inflammation, apoptosis, and oxidative stress: the role of SIRT 1 signaling. Journal of Pineal Research, 59(2), 23

___

APA Arslan, Y. , Köklü, Ş. & Yakupoğlu, G. (2022). Karnabahar ve brokoli fidelerine yapılan melatonin uygulamalarının tuz stresi üzerine etkisi . Harran Tarım ve Gıda Bilimleri Dergisi , 26 (2) , 181-192 . DOI: 10.29050/harranziraat.1065707
Harran Tarım ve Gıda Bilimleri Dergisi
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Harran Üniversitesi

6.7b292

Sayıdaki Diğer Makaleler

Tüketicilerin PGI tescilli Gümüşhane ev tipi dut ürünleri tüketim tercihleri: Gümüşhane örneği

Yavuz TOPCU, Mustafa ÇAVDAR

Hatay Biberi köy popülasyonlarından döl kontrollü teksel seleksiyon yöntemi ile seçilen genotiplerde meyve özellikleri

Gonca ÖNTÜRK, Sebahattin ÇÜRÜK

Farklı kurutma yöntemleri ile elde edilmiş peynir tozlarının ısıl işlem görmüş sucukların kalite ve duyusal özelliklerine olan etkisinin incelenmesi

Özlem YALÇINÇIRAY, Emre HASTAOĞLU, Meryem GÖKSEL SARAÇ, Özlem PELİNCAN

Ambalaj materyalinin yoğurdun raf ömrü ve bazı kalite kriterleri üzerine etkisi

Sezen HARMANKAYA, Emine Betül AKALIN, Koray İŞBARALI

Karnabahar ve brokoli fidelerine yapılan melatonin uygulamalarının tuz stresi üzerine etkisi

Yasin ARSLAN, Şebnem KÖKLÜ, Gökçen YAKUPOĞLU

Adıyaman ili bağ alanlarında Lobesia botrana (Denis & Schiffermüller) (Lepidoptera: Tortricidae)’ya karşı çiftleşmeyi engelleme tekniğinin kullanılması

Merve Mine TOPRAK, Mahmut Murat ASLAN, Zehra Sena GÖZÜBENLİ

Kayseri ikinci ürün şartlarında bazı mısır çeşitlerinin silajlık performanslarının değerlendirilmesi

Sancar BULUT

Organik gübrelerin mısır bitkisinin verim bileşenleri ile tanenin protein ve nişasta içeriğine etkisi

Alihan ÇOKKIZGIN, Ümit GİRGEL, Zekeriya KARA, Mustafa ÇÖLKESEN, Kadir SALTALI, Cengiz YÜRÜRDURMAZ

Kayseri ilinde çerezlik kabak (Cucurbita pepo L. var. pepo) ekim alanlarındaki böcek ve akar faunasının belirlenmesi

Şükrü ÜLKÜCÜ, Ebubekir YÜKSEL, Ramazan CANHİLAL

Bazı elma çeşitlerinin Malatya ili Battalgazi ilçesi ova koşullarında performanslarının belirlenmesi

Sebahat TURAN, Hüseyin KARLIDAĞ