Fitopatolojide Nanoteknoloji

Son yıllarda farklı alanlarda kullanılan nanoteknoloji tarımda; zirai ilaç kullanımını azaltma, bitki ve hayvan ıslahı geliştirme, bitki hastalıklarını önlemede, aynı zamanda hastalık tespitinde ve yeni nano-bioendüstriyel ürünler oluşturmada gelecek vaat etmektedir. Çok farklı nanopartiküller kullanılarak üretilen nanofungisitlerin klasik formülasyonlarla karşılaştırıldığında oldukça avantajları olduğu görülmektedir. Ayrıca pestisitin etkin kullanımı ve hastalık kontrolünde etkili sonuç alınabilmesi için akıllı salım metodları geliştirilmektedir. Sonuç olarak, bitki hastalıkarının kontrolünde nanopestisitlerin kullanımının temelleri eskilere dayanmasına karşın son yıllarda popüleritesi artan yeni bir yaklaşım olarak karşımıza çıkmaktadır. 

Nanotechnology in Phytopathology

In recent years, nanotechnology, which is used in different fields, promises to reduce the use of pesticides, to develop plant and animal breeding, to prevent plant diseases, at the same time to detect disease and to form new nano-bioindustrial products. It appears that nanofungicides which are produced using very different nanoparticles have considerable advantages when compared to classical formulations. In addition, smart release methods are being developed to ensure effective use of pesticides and effective results in disease control. As a result, despite the fact that the use of nanopesticides in the control of plant diseases is based on sponges, it has emerged as a new approach increasing in popularity in recent years.

___

Abbasian, M., Kashani, A., Ardakani, M.R., Rejali, F., Timajchi, M., Seifi, S.M.,Mafakheri, S., 2012. The Effects of Chemical, Biological and Nano Fungicides on Mycorrhizal Colonization and Quality of Sunflower. Annals of Biological Research, 3 (8): 4239-4245.

Banik, S., Sharma, P., 2011. Plant pathology in the era of nanotechnology. Indian Phytopathology, 64(2): 120-127.

Borkow, G., Gabbay, J., 2005. Copper as a biocidal tool. Current medicinal chemistry, 12(18): 2163-2175.

Brecht, M.O., Datnoff, L.E., Kucharek, T.A., Nagata, R.T., 2004. Influence of silicon and chlorothalonil on the suppression of gray leaf spot and increase plant growth in St. Augustinegrass. Plant Disease, 88(4): 338-344.

Campos E.V.R., Oliveira J..LD., Fraceto LF., Baljit Singh B., 2015. Polysaccharides as safer release systems for agrochemicals. Agron. Sustain. Dev, 35(1): 47–66.

Chen, L.C., Kung, S.K., Chen, H.H., Lin, S.B., 2010. Evaluation of zeta potential difference as an indicator for antibacterial strength of low molecular weight chitosan. Carbohydrate Polymers, 82(1): 913-919.

Chowdappa, P., Shivakumar, G., 2013. Nanotechnology in crop protection: Status and scope. Pest Management in Horticultural Ecosystems, 19(2): 131-151.

Çıracı, S., 2005. Metrenin Bir Milyarda Birinde Bilim ve Teknoloji, Bilim ve Teknik, Ağustos, Ek sayı: 6-10.

Garcia Rincon, J., Vega Perez, J., Guerra Sinchez, M.G., Hernndez Lauzardo, A.N., Peqa Diaz, A., Velizquez Del Valle, M.G., 2010. Effect of chitosan on growth and plasma membrane properties of Rhizopus stolonifer (Ehrenb.:Fr.) Vuill. Pesticide Biochemistry and Physiology, 97(3): 275-278.

González Melendi, P., Fernández Pacheco, R., Coronado, M.J., Corredor, E., Testillano, P.S., Risueño, M.C., Marquina, C., Ibarra, M.R., Rubiales, D., Pérez de Luque, A., (2008). Nanoparticles as Smart Treatment delivery Systems in Plants: Assessment of Different Techniques of Microscopy for their Visualization in Plant Tissues. Annals of Botany, 101(1): 187-195.

Gopal, M., Gogoi, R., Srivastava, C., Kumar, R., Singh, P., Nair, K., Yadav, S., Arunava Goswamı, A., 2011. Nanotechnology and its application in plant protection. “Alınmıştır. Plant Pathology in India: Vision 2030, Indian Pathology Society, India 224-232pp

Govindaraju, K., Tamilselvan, S., Kiruthiga, V., Singaravelu, G., 2010. Biogenic silver nanoparticles by Solanum torvum and their promising antimicrobial activity. Journal of Biopesticides, 3(1): 394-399.

He, L., Liu, Y., Mustapha, A., Lin, M., 2011. Antifungal activity of zinc oxide nanoparticles against Botrytis cinerea and Penicillium expansum. Microbiological Research, 166(3): 207-215.

Himmelweit, F., 1960). The collected papers of Paul Ehrlich, Vol. 3. London: Pergamon Press. 615 pp.

Ing, L.Y., Zin, N.M., Sarwar, A., Katas, H., 2012. Antifungal activity of chitosan nanoparticles and correlation with their physical properties. International Journal of Biomaterials, 2012: 1-9.

Jaidev, L.R., Narasimha, G., 2010. Fungal mediated biosynthesis of silver nanoparticles, characterization and antimicrobial activity. Colloids Surf. B, Biointerfaces, 81(2): 430-433.

Jo, Y.K., Kim, B.H., Jung, G., 2009. Antifungal activity of silver ions and nanoparticles on phytopathogenic fungi. Plant Disease, 93(10): 1037-1043.

Kamel, A., Mousa, A., 2015 Nanobiofungicides: are they the Next-Generation of Fungicides?. Journal of Nanotechnology and Materials Science, 2(1): 1-3.

Kasprowicz, M.J., Koziol, M., Gorczyca, A., 2010. The effect of silver nanoparticles on phytopthogenic species of Fusarium culmorum. Journal of Microbiology, 56(3): 247-253.

Kim, S.W., Kim, K.S., Lamsal, K., Kim, Y.J., Kim, S.B., Jung, M., Sim, S.J., Kim, H.S., Chang, S.J., Kim, J.K., and Lee, Y.S., 2009. An in vitro study of the antifungal effect of silver nanoparticles on oak wilt pathogen Raffaelea sp. Journal of Microbiology and. Biotechnology, 19(8): 760– 764.

Kong, M., Chen, X.G., Xing, K., Park, H.J., 2010. Antimicrobial properties of chitosan and modeof action: a state of the art review. International Journal of Food Microbiology, 144(1): 51-63.

Koul, O., Walia, S., Dhaliwal, G.S., 2008. Essential oils as green pesticides: potential and constraints. Biopestic Int, 4(1): 63-84.

Li, H., Huang, X., Li, J., Liu, J., Joyce, D., He, S., 2012. Efficacy of nano-silver in alleviating bacteria-related blockage in cut rose cv. Movie Star stems. Postharvest Biology and Technology, 74: 36-41.

Liu, J., He, S., Zhang, Z., Cao, J., Lv, P., He, S., Cheng, G., Joyce, D.C., 2009. Nano-silver pulse treatments inhibit stem-end bacteria on cut gerbera cv. Ruikou flowers. Postharvest Biology and Technology, 54: 59-62.

Liu, J., Ratnayake, K., Joyce, DC., He, S., Zhang, Z., 2012. Effects of three different nano-silver formulations on cut Acacia holosericea vase life. Postharvest Biology and Technology, 66: 8-15.

Lok, CN., Ho, C.M., Chen, R., He, Q.Y., Yu, W.Y., Sun, H., Tam, P.K., Chiu, J.F. Che, C.M., 2006. Proteomic analysis of the mode of antibacterial action of silver nanoparticles. Journal of Proteome Res, 5(4): 916–924.

Lü, P., Cao, J., He, S., Liu, J., Li, H., Cheng, G., Ding, Y., Joyce, D.C., 2010. Nano-silver pulse treatments improve water relations of cut rose cv. Movie Star flowers. Postharvest Biology and Technology, 57: 196-202.

Meng, Y., Li, Y., Galvani, C.D., Hao, G., Turner, J.N., Burr, T.J., Hoch, H.C., 2005. Upstream Migration of Xylella fastidiosa via Pilus-Driven Twitching Motility. Journal of Bacteriology, 187(16): 5560-5567.

Min, J.S., Kim, K.S., Kim, S.W., Jung, J.H., Lamsal, K., Kim, S.B., 2009. Effects of colloidal silver nanoparticles on sclerotium forming phytopathogenic fungi. Journal of Plant Pathology. 25(4): 376-380.

Kazemi, M., Ameri, A., 2012. Postharvest life of cut gerbera flowers as affected by nano-silver and acetylsalicylic acid. Asian Journal of Biochemistry, 7(2): 106-111.

Morones, J.R., Elechiguerra, J.L., Camacho, A., Holt, K., Kouri, J.B., Ramírez, J.T., Yacaman M.J., 2005. The bactericidal effect of silver nanoparticles. Nanotechnology, 16(10): 2346–2353.

Nazemi Rafi, Z., and Ramezanian, A., 2013. Vase life of cut rose cultivars Avalanchei and Fiestai as affected by NanoSilver and S-carvone treatments. South African Journal of Botany, 86: 68-72.

Nugaeva, N., Gfeller. K.Y., Backmann, N., Lang, H.P., Duggelin, M. and Hegner, M., 2005. Micromechanical cantilever array sensors for selective fungal immobilization and fast growth etection. Biosensors and Bioelectronics, 21(6): 849-856.

Phaechamud, T., Ritthidej, G.C., 2008. Formulation variables influencing drug release from layered matrix system comprising chitosan and xanthan gum. AAPS Pharm SciTech, 9(3): 870-877.

Patra, P., Goswami, A., 2012. Zinc nitrate derived nano ZnO: Fungicide for diseas e management of horticultural crops. International journal of Innovative Horticulture, 1(1): 28-33.

Rabea, E.I., Badawy, M.E.T., Stevens, C.V., Smagghe, G., Steurbaut, W., 2003. Chitosan as Antimicrobial Agent: Applications and Mode of Action. Biomacromolecules, 4(6): 1457-1465.

Roller, S., Covill, N., 1999. The antifungal properties of chitosan in laboratory media and apple juice. International Journal of Food Microbiology, 47(1-2): 67-77.

Shah, V., Belozerova, I., 2009. Influence of metal nanoparticles on the soil microbial community and germination of lettuce seeds. Water Air Soil Pollution, 197: 143-148.

Sharon, M., Choudhary, A.K., Kumar, R., 2010. Nanotechnology in agricultural diseases and food safety. Journal of Phytology, 2(4), 83-92.

Shi, S., Wang, W., Liu, L., Wu, S., Wei, Y., Li, W., 2013. Effect of chitosan/nano-silica coating on the physicochemical characteristics of longan fruit under ambient temperature. Journal of Food Engineering, 118(1): 125-131.

Singh, J., 2006. Nanomaterials and Nanotechnology. Asian Journal of Chemistry 18(5): 3271-3274.

Stampoulis, D., Sinha, S.K., White, J.C., 2009. Assay-dependent phytotoxicity of nanoparticles to plants. Environment Science. Technology, 43(24): 9473-9479.

Sudarshan, N.R., Hoover, D.G., Knorr, D., 1992. Antibacterial action of chitosan. Food Biotechnology, 6(3): 257-272.

Tegart, G., 2003. Nanotechnology: The Technology for the 21th Century. The Second International Conference on Technology Foresight, 27-28 Şubat, 1-12s. Tokyo.

Torney, F., Trewyn, B.G., Lin, V.S.Y., Wang, K., 2007. Mesoporous silica nanoparticles deliver DNA and chemicals into plants. Nature Nanotechnology, 2(5): 295-300.

Vijayalakshmi, C., Chellaram C., Kumar S.L., 2015. Modern Approaches of Nanotechnology in Agriculture-A Review. Bioscience Biotechnology Research Asia, 12(1): 327-331.

Yadollahi, A., Arzani, K., Khoshghalb, H., 2009. The Role of Nanotechnology in Horticultural Crops Postharvest Management. Southeast Asia Symposium on Quality and Safety of Fresh and Fresh-Cut Produce, 3-5 August, 49-56p. Bangkok.

___

APA Atakan, A. & Özgönen Özkaya, H. (2018). Fitopatolojide Nanoteknoloji . Harran Tarım ve Gıda Bilimleri Dergisi , 22 (2) , 296-303 . DOI: 10.29050/harranziraat.287483
Harran Tarım ve Gıda Bilimleri Dergisi
  • Yayın Aralığı: Yılda 4 Sayı
  • Yayıncı: Harran Üniversitesi

5.9b238

Sayıdaki Diğer Makaleler

Toprakların C:N Oranı ve Bazı Toprak Özellikleri ile İlişkisi: Mardin Mazıdağı Örneği

Munzur ABAK, Erdal SAKİN

Fitopatolojide Nanoteknoloji

AYDIN ATAKAN, Hülya ÖZGÖNEN ÖZKAYA

Balıkesir İlinde Tarımsal Danışmanlık Hizmetinin Etkisinin Değerlendirilmesi

Hakan İMAMOĞLU, Ferit ÇOBANOĞLU

Mikrodalga ve Pastörizasyon Uygulamalarının Siyah Havucun Kalite Parametreleri Üzerine Etkisinin Belirlenmesi

Filiz UÇAN TÜRKMEN, Hatice Aysun MERCİMEK TAKCI, Sümeyye ÖZMERMER, Yasemin BOZKURT, Ayşegül GÜNERİ, Zeliha ELAGÖZ

Metabolik Gıda İntoleransları

Aylin Akoğlu, Murat Oruç

Kırmızı Mercimekte Zararlı Dolycoris baccarum L. ve Piezodorus lituratus (F.)’ a Karşı Deltamethrin’in Biyolojik Etkinliği

Çetin MUTLU, Vedat KARACA, Ayhan ÖĞRETEN, Musa BÜYÜK, Yunus BAYRAM

Keçiboynuzu Pekmezi İlave Edilerek Üretilen Meyveli Yoğurdun Bazı Özellikleri

Şerafettin ÇELİK, Naciye ÜNVER, Betül GÜÇ, Pınar CEYLAN

Pamuk (Gossypium hirsutum L.) Genotiplerinin Çoklu Dizi (line x tester) Melezlerinde Bazı Lif Özelliklerinin Kalıtımı

Nazife Özkan, Osman ÇOPUR

Diyarbakır İli Pamuk Ekim Alanlarında Bulunan Yeşilkurt, Helicoverpa armigera (Hübner) (Lepidoptera: Noctuidae)’un Popülasyon Dalgalanmasının Belirlenmesi

Merve AKYILDIZ, Erol BAYHAN

Biocontrol of Alternaria alternata Causing Leaf Spot Disease on Faba Bean (Vicia faba L.) Using Some Trichoderma harzianum Isolates Under In vitro Condition

Mukaddes KAYIM, Amin Mohammed YONES, Ali ENDES