Fizik ve Kimya Eğitiminde Bilimin Doğasının Öğretimi: Eleştirel Bir Bakış

Fen eğitiminde birçok çalışma bilimin doğasının (NOS) önemini göstermiştir ve bilimin doğasının öğretiminin fen eğitiminin nihai amacı olduğunu iddia etmişlerdir. Fen eğitiminin okul ortamından müfredat içeriğine kadar tüm bileşenlerini yansıtmaya önem verildiği vurgulanmıştır. Ayrıca, birçok araştırma, fen bilgisi öğretmenlerinin bilimin doğasının ve epistemolojisi hakkındaki inançlarının öğretim uygulamaları üzerinde doğrudan bir etkiye sahip olduğu görüşünü benimsemektedir. Her ne kadar çok sayıda küresel ve yerel (Türkiye) girişim bilimin doğası hakkında tatmin edici düzeyde bir anlayış öğretmeyi ve epistemolojik inançları, hem öğrenciler hem de öğretmenler için, modern felsefi yaklaşımlarla paralel olarak ortaya koymayı amaçlasa da, araştırmaların çoğu, eski veya yeni, tatmin edici olmayan sonuçlar göstermiştir. Bu çalışmanın iki ana amacı vardır. İlk amaç, ikinci sınıf fen bilgisi öğretmen adaylarının epistemolojik inançlarını ve NOS hakkındaki görüşlerini ortaya koymaktır. İkinci olarak, bilimin doğası hakkındaki görüşlerini “consensus view” e göre iletmeyi amaçlayan fizik ve kimya derslerinde önceki yapılandırmacı çabaların ışığında sonuçları değerlendirmektir. Bilimin doğasının hakkındaki görüşlerini ortaya koymak için VOSTS testi kullanıldı. 45 ikinci sınıf öğretmen adayının katıldığı anketin sonuçlar nicel olarak analiz edildi. Sonuçlar, on maddeden sekizinin çoğunlukla pozitivist bir yaklaşımla yanıtlandığını göstermiştir. Anketin sonuçları, katılımcıların çoğunun pozitivist görüşlere sahip olduğunu gösterdiğinden, bilimin doğasının anlama düzeyinin neden hala tatmin edici olmadığı masaya yatırlımıştır. Ek olarak, sonuçlar, bilimin doğasının öğretiminin esas olarak “consensus view” i destekleyen yapılandırmacı fen müfredatı tarafından eğitilen katılımcıların, bilimin doğasını anlamada zayıf bir düzeyde olduğunu göstermiştir. Benzer bir şekilde, bilimin doğasının yetersiz düzeyde anlaşılması için önceki çalışmalar ışığında olası nedenler önerilmiş ve tartışılmıştır. Sonuçlar, bilimin doğasının öğretiminin günlük yaşam ve bilim ile insan ürünü olarak bağlamlaştırılmasından çok uzak olduğunu göstermektedir.

Teaching of the NOS in Physics and Chemistry Education: Odds and Evens

In science education many researches and studies have demonstrated importance of nature of science (NOS) and they claimed that teaching of NOS is the ultimate goal of science education. Given importance has been emphasized to reflect on all components of science education from school environment to curriculum content. Besides, many researches embraces a view that beliefs of science teachers about NOS and epistemology of science have a direct effect on their instructional practices. Although numerous global and local (Turkey) attempts aim to teach a satisfactory level of understanding about  NOS and pave epistemological beliefs in line with the modern philosophical approaches for both students and teachers, most of the researches, authentic or novel, have demonstrated unsatisfactory results. This study has two main goals. First aim is to reveal sophomore pre-service science teachers’ epistemological beliefs and views about the NOS . Secondly, evaluate the results in the lights of previous constructivist efforts that aims to transmit NOS views in line with consensus view. To reveal the views about the NOS, VOSTS test was used. 45 sophomore pre-service science teachers responded the test and the results were quantitatively analyzed. The results showed that eight of ten items were mostly responded in a positivist approach. Because the results of the questionnaire demonstrated that most of the participants have positivist views, it was questioned that why still the level of understanding of the NOS is not satisfactory. Additionally, results showed that participants, who had been educated by constructivist science curricula that has mainly supported consensus view of NOS teaching, showed weak level of understanding NOS. In a similar vein, possible reasons were proposed and discussed in the light of previous studies for inadequate level of understanding of the NOS. Results imply that teaching of the NOS seems far from being contextualized with daily life and science as a human enterprise.

___

  • Abd-El-Khalick, F. (2001). Embedding Nature of Science Instruction in Preservice Elementary Science Courses: Abandoning Scientism, But... Journal of Science Teacher Education, 12(3), 215-233.
  • Abd-El-Khalick, F.,&Lederman, N. G. (2000). Improving science teachers’ conceptions of the nature of science: A critical review of the literature. International Journal of Science Education, 22(7), 665 – 701.
  • Aikenhead, G. S., & Ryan, A. G. (1992). The Development of a New Instrument: ‘Views on Science—Technology—Society’(VOSTS). Science Education, 76(5), 477-491.
  • Allchin, D. (2014). From science studies to scientific literacy: A view from the classroom. Science & Education, 23(9), 1911-193.
  • Allchin, D. (2017). Beyond the consensus view: Whole science. Canadian Journal of Science, Mathematics and Technology Education, 17(1), 18-26.
  • Aslan, O., Yalçin, N., & Taşar, M. F. (2015). Fen ve Teknoloji Öğretmenlerinin Bilimin Doğası Hakkındaki Görüşleri. Ahi Evran Üniversitesi Kırşehir Eğitim Fakültesi Dergisi, 10(3), 1-8.
  • Barufaldi, J. P., Bethel, L. J., & Lamb, W. G. (1977). The Effect of a Science Methods Course on the Philosophical View of Science Among Elementary Education Majors. Journal of Research in Science Teaching, 14(4), 289-294.
  • Brickhouse, N. W. (1989) The Teaching of the Philosophy of Science in Secondary Classrooms: Case studies of teachers’ Personal Theories. International Journal of Science Education, 11 (4), 437–449.
  • Carey, R. L., & Stauss, N. G. (1970). An Analysis of Experienced Science Teachers' Understanding of the Nature of Science. School Science and Mathematics, 70(5), 366-376.
  • Deng, F., Chen, D. T., Tsai, C. C. & Chai, C. S. (2011). Students' views of the nature of science: A critical review of research. Science Education, 95(6), 961-999.
  • Durant, J.R. (1994). What is scientific literacy?, European Review, 2(1), 83-89.
  • Duschl, R. A and Wright, E. (1989). A Case Study of High School Teachers’ Decision Making Models for Planning and Teaching Science. Journal of Research in Science Teaching, 26 (6), 467–501.
  • Gürses, A., & Doğan, Ç. (2005). Bilimin Doğası ve Yüksek Öğrenim Öğrencilerinin Bilimin Doğasına Dair Düşünceleri. http://www.metabilgi.org/Metabilgi [Access Date: 12 of November, 2018].
  • Hashweh, M. Z. (1996). Effects of Science Teachers' Epistemological Beliefs in Teaching. Journal of Research in Science Teaching, 33(1), 47-63.
  • Hodson, D. (2008). Towards Scientific Literacy. Rotterdam, The Netherlands: Sense.
  • Irzık, G., & Nola, R. (2011). A Family Resemblance Approach to the Nature of Science for Science Education. Science & Education, 20(7-8), 591-607.
  • Jenkins, E. W., (1996). The ‘Nature of Science’ as a Curriculum Component. Journal of Curriculum Studies, 28(2), 137-150.
  • Justi, R., & Gilbert, J. (2000). History and Philosophy of Science through Models: Some Challenges in the Case of' the Atom'. International Journal of Science Education, 22(9), 993-1009.
  • Kaya, E., & Erduran, S. (2016). From FRA to RFN, or How the Family Resemblance Approach can be Transformed for Science Curriculum Analysis on Nature of Science. Science & Education, 25(9-10), 1115-1133.
  • Klopfer, L. E., & Cooley, W. W. (1961). Test on Understanding science, Form W. Princeton, NJ: Educational Testing Service.
  • Klopfer, L. E., & Cooley, W. W. (1963). The History of Science Cases for High Schools in the Development of Student Understanding of Science and Scientists: A report on the HOSG Instruction Project. Journal of Research in Science Teaching, 1(1), 33-47.
  • Kolstø, S. D. (2001). Scientific literacy for citizenship: Tools for dealing with the science dimension of controversial socioscientific issues. Science Education, 85(3), 291-310.
  • Lakatos, I. (1971). History of Science and Its Rational Reconstructions. In PSA 1970 (pp. 91 136). Springer, Dordrecht.
  • Latour, B. (1987). Science in Action. Cambridge, MA: Harvard University Press.
  • Lederman, N. G. (1992). Students' and Teachers' Conceptions of the Nature of Science: A Review of the Research. Journal of Research in Science Teaching, 29(4), 331-359.
  • Lederman, N. G., (2007). “Nature of Science: Past, Present, and Future”, Handbook of Research on Science Education, 2:831-879.
  • Lederman, N. G., Abd-El-Khalick, F., Bell, R. L., & Schwartz, R. S. (2002). Views of Nature of Science Questionnaire: Toward Valid and Meaningful Assessment of Learners’ Conceptions of Nature of Science. Journal of Research in Science Teaching, 39(6), 497–521.
  • Lin, H. S., & Chen, C. C. (2002). Promoting preservice chemistry teachers' understanding about the nature of science through history. Journal of Research in Science Teaching, 39(9), 773-792.
  • Mackay, L. D. (1971). Development of Understanding about the Nature of Science. Journal of Research in Science Teaching, 8(1), 57-66.
  • Maggioni, L., & Parkinson, M. M. (2008). The Role of Teacher Epistemic Cognition, Epistemic Beliefs, and Calibration in Instruction. Educational Psychology Review, 20(4), 445-461. Masson, S., & Vázquez-Abad, J. (2006). Integrating History of Science in Science Education through Historical Microworlds to Promote Conceptual Change. Journal of Science Education and Technology, 15(3-4), 257.
  • Matthews, M. (1998). In defense of modest goals when teaching about the nature of science. Journal of Research in Science Teaching, 35(2), 161 – 174.
  • McComas, W. F., Clough, M. P., & Almazroa, H. (1998). The Role and Character of the Nature of Science in Science Education. In The Nature of Science in Science Education (pp. 3-39). Springer, Dordrecht.
  • Mıhladız, G., & Doğan, A. (2010). Fen Bilgisi Öğretmen Adaylarının Bilimin Doğası Konusundaki Pedagojik Alan Bilgilerinin Araştırılması. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi 32(2), 380-395.
  • Millar, R., & Osborne, J. (1998). Beyond 2000: Science education for the future (the Report of a Seminar Series Funded by the Nuffield Foundation). London: King’s College London, School of Education.
  • Monk, M., & Osborne, J. (1997). Placing the History and Philosophy of Science on the Curriculum: A Model for the Development of Pedagogy. Science Education, 81(4), 405-424.
  • Niaz, M. (1998). From Cathode Rays to Alpha Particles to Quantum of Action: A Rational Reconstruction of Structure of the Atom and its Implications for Chemistry Textbooks. Science Education, 82(5), 527-552.
  • Niaz, M. (2001). Understanding Nature of Science as Progressive Transitions in Heuristic Principles. Science Education, 85(6), 684-690.
  • Niaz, M. (2016). Nature of Science in Science Education: An Integrated View. In Chemistry Education and Contributions from History and Philosophy of Science (pp. 37-89). Springer, Cham.
  • Niaz, M., & Coştu, B. (2009). Presentation of Atomic Structure in Turkish General Chemistry Textbooks. Chemistry Education Research and Practice, 10(3), 233-240.
  • Niaz, M., & Rivas, M. (2016). Students’ Understanding of Research Methodology in the Context of Dynamics of Scientific Progress. Springer.
  • Osborne, J. (1997). Science education for the future—the road ahead? Paper presented at the First International Conference of the European Science Education Research Association, Rome.
  • Osborne, J., Collins, S., Ratcliffe, M., Millar, R., & Duschl, R. (2003). What “Ideas‐about‐Science” Should be Taught in School Science? A Delphi Study of the Rxpert Community. Journal of Research in Science Teaching, 40(7), 692-720.
  • Özdemir, O. (2010). Fen ve Teknoloji Öğretmen Adaylarının Fen Okuryazarlığının Durumu. Türk Fen Eğitimi Dergisi, 7(3), 42-56.
  • Özden, M., & Cavlazoğlu, B. (2015). İlköğretim Fen Dersi Öğretim Programlarında Bilimin Doğası: 2005 ve 2013 Programlarının İncelenmesi. Eğitimde Nitel Araştırmalar Dergisi, 3(2), 40-65.
  • Ryder, J. (2001). Identifying science understanding for functional scientific literacy. Studies in Science Education, 36, 1-44.
  • Savin-Baden, M., & Major, C. H. (2013). Qualitative research: The essential guide to theory and practice. Routledge.
  • Scharmann, L. C. (1990). Enhancing an Understanding of the Premises of Evolutionary theory: The Influence of a Diversified Instructional Strategy. School Science and Mathematics, 90(2), 91-100.
  • Seung, E. S., Bryan, L. A., & Nam, J. H. (2009). Korean Pre-Service Teachers' Understanding about the Nature of Science (NOS). Journal of the Korean Association for Science Education, 29(3), 314-328.
  • Smith, M. U., & Scharmann, L. C. (1999). Defining Versus Describing the Nature of Science: A Pragmatic Analysis for Classroom Teachers and Science Educators. Science Education, 83(4), 493-509.
  • Solomon, J., Duveen, J., Scot, L., & McCarthy, S. (1992). Teaching about the Nature of Science through History: Action Research in the Classroom. Journal of Research in Science Teaching, 29, 409–421.
  • Tsai, C. C. (2002). Nested Epistemologies: Science Teachers' Beliefs of Teaching, Learning and Science. International Journal of Science Education, 24(8), 771-783.