Öğrencilerin Doppler Etkisinde Matematiksel Model Kullanımına Bağlı Problem Çözme Yaklaşımlarındaki Değişimin İncelenmesi

Bu çalışma, öğrencilerin matematiksel model kullanımını inceleyerek problem çözme yaklaşımlarını belirlemeyi amaçlamaktadır. Öğrencilerin çoğu görelilik kavramlarının alışılmadık, soyut ve zor olduğunu düşünmeleri sebebiyle, bu araştırmada göreli kinematiğe- göreli Doppler Etkisine- odaklanılmıştır. Araştırmaya bir üniversitenin ikinci sınıfında kayıtlı fizik (n=60) ve fizik eğitimi (n=32) olmak üzere modern fizik dersini alan iki grup öğrenci katılmıştır. Katılımcılardan testteki Doppler Etkisi problemlerine ayrıntılı olarak yazılı cevap vermeleri istenmiştir. Daha sonra yarı yapılandırılmış görüşmeler için altı öğrenci amaçsal örneklem ile seçilmiştir. Öğrencilerin matematiksel model kullanımları, frekans ve dalga boyu, kaynak ve gözlemci, kırmızıya kayma ve maviye kayma gibi bazı temel kavramları ayırt etmede zorluk yaşadıklarını ve bu kavramları birbiri yerine kullandıklarını ortaya çıkarmıştır. Ayrıca, öğrencilerin problemi verilen fiziksel bağlamda farklı formlarda ifade etme becerilerinin eksikliğinden dolayı öğrenciler uygun modeli belirlemekte de zorluk yaşamıştır. Bunun sonucunda öğrenciler hem fiziksel hem de matematiksel olarak anlamsız modeller kullanmış ve problem çözme yaklaşımları matematiksel model kullanımına göre değişkenlik göstermiştir

Examination of the Variation in Students' Problem Solving Approaches Due to the Use of Mathematical Models in Doppler Effect

This study aims to investigate students’ problem solving approaches by examining students' use of mathematical models. In this research, since many students think that the concepts of relativity are unfamiliar, abstract and difficult, it was focused on relativistic kinematics- the relativistic Doppler Effect. Sophomores from two cohorts of physics (n=60) and physics teaching (n=32) enrolled in a modern physics course at a university participated in the study. Participants were asked to provide extended written responses to the Doppler Effect problems with a test. Afterwards six students were purposefully selected for semi-structured interviews. Students’ use of mathematical models revealed that students had difficulty in discriminating between fundamental concepts such as frequency and wavelength, source and observer, red-shift and blue-shift, and they consequently used these concepts interchangeably. In addition, because of students' the lack of ability of representing the problem in different forms according to a given physical context, they also had difficulty in determining the appropriate model. In conclusion, students used both physically and mathematically meaningless models and their problem solving approaches varied due to the use of mathematical models

___

  • Arriassecq, I., & Greca, I. M. (2012). A teaching-learning sequence for the special relativity theory at high school level historically and epistemologically contextualized. Science & Education, 21(6), 827-851.
  • Bandyopadhyay, A. (2009). Students’ ideas of the meaning of the relativity principle. European Journal of Physics, 30, 1239-1256.
  • Barbier, R., Fleck, S., Perries, S., & Ray, C. (2005). Integration of information and communication technologies in special relativity teaching. European Journal of Physics, 26, S13-26.
  • Beiser, A. (2003). Concepts of modern physics. New York: McGraw Hill. Bing, T. J., & Redish, E. F. (2007). The cognitive blending of mathematics and physics knowledge. AIP Conference Proceedings, 883, 26-29.
  • Breitenberger, E. (1992). The mathematical knowledge of physics graduates: Primary data and conclusions. American Journal of Physics, 60(4), 318-24.
  • Dhillon, A. S. (1998) Individual differences within problem-solving strategies used in physics. Science Education, 82, 379- 405.
  • Dimitriadi, Κ., Halkia, K., & Skordoulis, Κ. (2005). Basic concepts of special theory of relativity in secondary education: Do students understand them? E-proceedings of the ESERA Conference, Barcelona-Spain, 28 August-1 September.
  • Fraenkel, J. R., & Wallen, N. E. (2000). How to design & evaluate research in education. Boston, MA: McGraw Hill. French, A. P. (1968). Special relativity. London: Nelson.
  • Greca, I. M., & Moreira, M. A. (2002). Mental, physical and mathematical models in the teaching and learning of physics. Science Education, 86, 106-121.
  • Hammer, D., & Elby, A. (2003). Tapping epistemological resources for learning physics. Journal of the Learning Sciences, 12, 53-90.
  • Hestenes, D. (1987). Toward a modeling theory of physics instruction. American Journal of Physics, 55(5), 440-454.
  • Hewson, P. W. (1982). A case study of conceptual change in special relativity: The influence of prior knowledge in learning. European Journal of Science Education, 4(1), 61-78.
  • Horwitz, P., Taylor, E. F., & Barowy, W. (1994). Teaching special relativity with a computer. Computers in Physics, 8(1), 92-97.
  • Hosson, C. D., Kermen, I., & Parizot, E. (2010). Exploring students’ understanding of reference frames and time in Galilean and special relativity. European Journal of Physics, 31, 1527-1538.
  • Larkin, J. H., & Reif, F. (1979). Understanding and teaching problem solving in physics. European Journal of Science Education, 1(2), 191-203.
  • Maloney, D. P. (1994). Research on problem solving: Physics. In D. L. Gabel (Ed.), Handbook of research on science teaching and learning, (p. 327–354). New York: Macmillan.
  • Moriconi, M. (2006). Special theory of relativity through the Doppler Effect. European Journal of Physics, 27, 61-76.
  • Özcan, Ö. (2011). Fizik öğretmen adaylarının özel görelilik kuramı ile ilgili problem çözme yaklaşımları. Hacettepe University Journal of Education, 40, 310-320.
  • Panse, S., Ramadas, J., & Kumar, A. (1994). Alternative conceptions in Galilean relativity: Frames of reference. International Journal of Science Education, 16(1), 63-82 . Pietrocola, M., & Zylbersztajn, A. (1999). The use of the principle of relativity in the interpretation of phenomena by undergraduate physics students. International Journal of Science Education, 21(3), 261-276.
  • Ramadas, J., Barve, S., & Kumar, A. (1996). Alternative conceptions in Galilean relativity: Inertial and non-inertial observers. International Journal of Science Education, 18(5), 615-630.
  • Redish, E. F., & Gupta, A. (2009). Making meaning with math in physics. Paper presented at GIREP-EPEC & PHEC Conference, Leicester-UK, 17-21 August.
  • Redish, E. F., Scherr, R. E., & Tuminaro, J. (2006). Reverse engineering the solution of a "simple" physics problem: Why learning physics is harder than it looks. The Physics Teacher, 44, 293-300.
  • Reif, F., & Heller, J. I. (1982). Knowledge structure and problem solving in physics. Educational Psychology, 17, 102- 127.
  • Resnick, R. (1968). Introduction to special relativity. New York: John Wiley & Sons Inc. Scherr, R. E. (2001). An investigation of student understanding of basic concepts in special relativity. Unpublished doctoral dissertation, University of Washington, Seattle, WA.
  • Scherr, R. E., Shaffer, P. S., & Vokos, S. (2001). Student understanding of time in special relativity: Simultaneity and reference frames. American Journal of Physics, 69(7), S24-35.
  • Scherr, R. E., Schaffer, P. S., & Vokos, S. (2002). The challenge of changing deeply held student beliefs about the relativity of simultaneity. American Journal of Physics, 70, 1238-1248.
  • Sezgin, S. G. (2011). Addressing pre-service teachers' understandings and difficulties with some core concepts in the special theory of relativity. European Journal of Physics, 32, 1-13.
  • Steinberg, R. N., Wittmann, M. C., & Redish, E. F. (1996). Mathematical tutorials in introductory physics sample class.
  • Paper presented at the International Conference on Undergraduate Physics Education (ICUPE), College Park MD, July 31 - August 3.
  • Tuminaro, J., & Redish, E. F. (2004). Understanding students' poor performance on mathematical problem solving in physics. AIP Conference Proceedings, 720, 11-14.
  • Villani, A., & Arruda, S. M. (1998). Special theory of relativity, conceptual change and history of science. Science & Education, 7, 85-100.
  • Villani, A. & Pacca, J. L. A. (1987). Students’ spontaneous ideas about the speed of light. International Journal of Science Education, 9(1), 55-66.
  • Walsh, L. N., Howard, R. G., & Bowe, B. (2007). Phenomenographic study of students’ problem solving approaches in physics. Physical Review Special Topics: Physics Education Research, 3, 020108, 1-12.
  • Wells, M., Hestenes, D. & Swackhamer, G. (1995). A modeling method for high school physics instruction. American Journal of Physics, 63(7), 606-619.
  • Yiğit, N., Alev, N., Tural, G., & Bülbül, M. Ş. (2012). Fen bilgisi I. sınıf öğretmen adaylarının elektrik konusundaki problemleri anlama ve çözme durumları üzerine bir araştırma. Cumhuriyet International Journal of Education, (1)2, 18-36.