Model Tabanlı Sorgulama Yaklaşımının, Öğrencilerin Bilimin Doğası

Bu araştırma kapsamında, ortaokul fen eğitiminde zihinsel, paylaşılan ve uzlaşılan modeller oluşturma, modelleri test etme ve revize etme becerilerinden oluşan modelleme sürecinin öğrencilere kazandırılması ve bu yolla öğrencilerinin bilimin doğasına ilişkin görüşlerinin incelenmesi amaçlanmıştır. Araştırmada karma yöntemin, Eşzamanlı Üçgenleme Deseni kullanılmıştır. Çalışma grubu üç farklı okuldan seçilen 114 yedinci sınıf öğrencisi ile üç fen bilgisi öğretmeninden oluşmaktadır. Öğrencilerin modelleme becerilerinin geliştirilmesi için geliştirilen Model Tabanlı Sorgulama Programı, zihinsel, paylaşılan ve uzlaşılan model oluşturma becerileri ile "Yaşamımızdaki Elektrik" ünitesi kazanımlarından oluşmaktadır. Araştırmada nitel ve nicel veri toplama araçları eş zamanlı olarak kullanılmıştır. Nicel veri toplama aracı olarak seçilen BİLTEST deney ve kontrol gruplarına ön test ve son test olarak uygulanmıştır. Nitel veri toplama aracı olarak ise gözlem, odak grup görüşmesi ve doküman incelemesi kullanılmıştır. Nicel veriler ANCOVA ile analiz edilirken nitel veriler için içerik analizi yöntemi kullanılmıştır. Nicel analiz sonuçlarına göre, BİLTEST puanları arasında deney grubu lehine istatistiksel olarak anlamlı bir fark bulunmuştur (F1,111 = 9,747, p = ,002 , ?2 = 0,483). Ek olarak öğrencilerden ve öğretmenlerden toplanan nitel veriler model tabanlı sorgulama programının öğrencilerin bilimin doğasına ilişkin görüşlerini geliştirdiği, anlamlı öğrenmelerine katkı sağladığı ve derse katılımını arttırdığını tespit edilmiştir. Bu sonuçlar uygulanan yöntemin öğrencilerin bilimin doğasına ilişkin görüşlerini geliştirmede etkili bir yöntem olduğunu göstermektedir

The Effect of Model Based Inquiry towards Students’ Views of Nature of Science

This research aims to improve students’ modeling abilities via provide them opportunity of constructing, testing, using and revising their own models, and develop their views about nature of science. For this purpose, Concurrent – Triangulation Design was used as mixed method. Study was done with 114 seventh grade students and three science teachers from three different public schools. To enhance students modeling abilities, Modeling Based Science Education Program was designed based on Electricity in Our Life unit form Science Education Curriculum. The Modeling Based Science Education Program consist of constructing mental, expressed and consensus models in context of electrostatics and electric current topics. In this research qualitative and quantitative data were obtained concurrently. As quantitative data, Views of Nature of Science Test (BİLTEST) was used as pre and posttests. As quantitative data, participant observations, document reviews and interviews were used. According to quantitative analyses, there is meaningful difference between pre and post test scores of views of nature of science test of experimental and control groups (F1,111 = 9,747, p = ,002 , π2 = 0,483). Additionally, qualitative data obtained from students and teachers shows that, Modeling Based Science Education Program enables to meaningful permanent learning, student engagement and enhance students’ views of nature of science. This results shows that, modeling based science education program can be an effective method to develop students’ views of nature of science

___

  • American Association for the Advancement of Science (AAAS). (1990). Project 2061: Science for all Americans. New York: Oxford University Press.
  • Akerson, V. L., Abd-El-Khalick, F. & Lederman, N. G. (2000). Influence of a reflective explicit activity-based approach on elementary teachers’ conceptions of nature of science. Journal of Research in Scıence Teachıng, 37(4), 295-317.
  • Akerson, V. L., Morrison, J. A. & Mcduffie, A. R. (2006). One course is not enough: pre-service elementary teachers’ retention of improved views of nature of science. Journal of Research in Science Teaching, 43(2), 194– 213.
  • Bell, R. L. & Lederman, N. G. (2003). Understandings of the nature of science and decision making on science and technology based issues. Science Education, 87 (3), 352-377.
  • Bogdan, R. C. & Biklen, S. K. (2007). Qualitative research for education, an introduction to theory and methods (4th Ed.). Pearson Educ. Inc.
  • Cardoso Mendonça, P. C. & Justi, R. (2013). The relationships between modelling and argumentation from the perspective of the model of modelling diagram. International Journal of Science Education, 35:14, 2407 – 2434, DOI: 10.1080/09500693.2013.811615
  • Campbell, T., Zhang, D. & Neilson, D. (2011). Model based inquiry in the high school physics classroom: an exploratory study of implementation and outcomes. Journal of Science Education and Technology, 20, 258–269.
  • Coll, R., France, B., & Taylor, I. (2005). The role of models and analogies in science education: implications from research. International Journal of Science Education, 27(2), 183–198(16).
  • Çakmakçı, G. (2012). Promoting pre-service teachers’ ideas about nature of science through educational research apprenticeship. Australian Journal of Teacher Education, 37(2), 114-135.
  • Çil, E. ve Çepni, S. (2012). Kavramsal değişim yaklaşımı, doğrudan yansıtıcı yaklaşım ve milli eğitim bakanlığı ders kitabının bilimin doğası üzerine görüşler ve ışık ünitesindeki kavramsal değişim üzerine etkisi. Kuram ve Uygulamada Eğitim Bilimleri, 12(2), 1089 – 1116.
  • Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programmes. Science & Education, 16(7-8), 725-749.
  • Diakidoy, A., Vosniadou, S. & Hawks, J. D. (1997). Conceptual change in astronomy: models of the earth and of the day/night cycle in American-Indian children. European Journal of Psychology of Education, 12(2), 159-184
  • Duschl, R. A. & Grandy, R. (2013). Two views about explicitly teaching nature of science. Science & Education, 22, 2109–2139.
  • Erdoğan, M. N. (2011). Açık-düşündürücü öğretim dizini ile bilimin doğası odaklı fen içeriği öğretiminin lise öğrencilerinin bilimin doğası anlayışlarına etkisi. Doktora Tezi, Gazi Üniversitesi, Eğitim Bilimleri Enstitüsü.
  • Gilbert, J. K. (2005). Visualization in science education (Ed. Gilbert, J. K.). Springer
  • Gilbert, J. & Priest, M. (1997). Models and discourse: a primary school science class visit to a museum. Science Education, 81(6), 749 – 762.
  • Gilbert, S. W. & Ireton, S. W. (2003). Understanding models in earth and space science. Arlington, VA. NSTA Press.
  • Gilbert, S. W. (2011). Models-based science teaching. Virginia: NSTA Press.
  • Gobert, J. D. & Buckley, B. C. (2000). Introduction to model-based teaching and learning in science education. International Journal of Science Education, 22(9), 891- 894.
  • Greca, I. M. & Moreıra, M. A. (2002). Mental, physical, and mathematical models in the teaching and learning of physics. Science Education, 86 (1), 106–121. DOI: 10.1002/sce.10013
  • Halloun, I. (2006). Modeling theory in science education. Dordrecht, The Netherlands: Springer.
  • İyibil, Ü. ve Sağlam, Arslan, A. (2010). Fizik öğretmen adaylarının yıldız kavramına dair zihinsel modelleri. Necatibey Eğitim Fakültesi Elektronik Fen ve Matematik Eğitimi Dergisi (EFMED). 4(2), 25-46.
  • Justi, S. R. & Gilbert, K. J. (2000). History and philosophy of science through models: some challenges in the case of 'the atom'. International Journal of Science Education, 22(9), 993-1009, DOI: 10.1080/095006900416875
  • Justi, S. R. & Gilbert, K. J. (2002). Modelling teachers’ views on the nature of modelling and implications for the education of modellers, International Journal of Science Education, 24(4), 369-387. DOI: 10.1080/09500690110110142
  • Kahn, S. (2007). Model-based inquiries in chemistry. Science Education, 91(6), 877–905
  • Khishfe, R. & Abd-El-Khalick, F. (2002). Influence of explicit and reflective versus implicit inquiry-oriented instruction on sixth graders’ views of nature of science. Journal of Research in Scıence Teachıng, 39(7), 551- 578.
  • Köksal, M. S. (2010). The effect of explicit embedded reflective instruction on nature of science understandings, scientific literacy levels and achievement on cell unit. Graduate School Of Natural and Applıed Scıences Of Mıddle East Technıcal Unıversıty, Phd Thesis.
  • Köseoğlu, F., Tümay, H. ve Budak, E. (2008). Bilimin doğası hakkında paradigma değişimleri ve öğretimi ile ilgili yeni anlayışlar (paradigm changes about nature of science and new teaching approaches). GÜ, Gazi Eğitim Fakültesi Dergisi, 28(2), 221-237.
  • Lederman, N. G., Abd-El-Khalick, F., Bell, R. L. & Schwartz, R. S. (2002). Views of nature of science questionnaire: toward valid and meaningful assessment of learners’ conceptions of nature of science. Journal of Research in Science Teaching, 39 (6), 497–521.
  • MEB. (2005). Fen ve teknoloji dersi öğretim programı. Ankara: MEB Yayınları.
  • Manz, E. (2012). Understanding the codevelopment of modeling practice and ecological knowledge. Science. Education, 96(6), 1071–1105. doi: 10.1002/sce.21030
  • McComas, W. F., Almazroa, H. & Clough, M. P. (1998). The nature of science education: an introduction. Science & Education. 7(6), 511 – 532.
  • National Research Council (1996). National science education standards. Washington, DC: National Academy Press.
  • National Research Council. (2012). A framework for k-12 science education: practices, crosscutting concepts, and core ideas. Washington, DC: The National Academies Press.
  • Nelson M. M. & Davis, E. A. (2012). Preservice elementary teachers' evaluations of elementary students' scientific models: an aspect of pedagogical content knowledge for scientific modeling. International Journal of Science Education, 34:12, 1931-1959. DOI: 10.1080/09500693.2011.594103
  • Newman, I & Ridenour, C. S. (2008). Mixed methods research: exploring the interactive continuum. Carbondale: Southern Illinois University Press
  • Örnek, F. (2008). Models in science education: applications of models in learning and teaching science. International Journal of Environmental and Science Education, 2008, 3 (2), 35 – 45.
  • Passmore, C., Stewart, J. & Cartier, J. (2010). Model-based inquiry and school science: creating connections. School Science and Mathematics, 109(7). 394-402.
  • Rapp, D. R (2005). Mental models: theoretical issues for visualizations in science education. Visualization in science education (Ed. John K. Gilbert). Springer
  • Roychoudhury, A. (2007). Elementary students’ reasoning: crests and troughs of learning. Journal of Elementary Science Education, 19 (2), 25-43.
  • Ruebush, L., Sulikowski, M. & North, S. (2009). A simple exercise reveals the way students think about scientific modeling. Journal of College Science Teaching, January/February, 18 – 22
  • Salter, I. Y & Atkins, L. J. (2013). What students say versus what they do regarding scientific inquiry? Science Education, 98(1), 1-35. DOI: 10.1002/sce.21084
  • Shute, V. J. & Zapata-Rivera, D. (2008). Using an evidence-based approach to assess mental models. Understanding models for learning and instruction (Ed. Ifenthaler, D., Pirnay-Dummer, P. ve Spector, J. M.) Springer. http://www.springer.com/978-0-387-76897-7
  • Smyrnaiou, Z., Moustaki, F. & Chronis, K. (2012). Students’ constructionist game modeling activities as part of inquiry learning processes. Electronic Journal of e-Learning, 10(2), 235 – 248.
  • Stephens, S. A., McRobbie, C. J & Lucas, K. B. (1999). Model-based reasoning in a year 10 classrooms. Research in Science Education, 29(2), 189-208.
  • Ünal Çoban, G. ve Ergin, Ö. (2013) Modellemeye dayalı fen öğretiminin etkilerinin bilimsel bilgi açısından incelenmesi. Hacettepe Üniversitesi Eğitim Fakültesi Dergisi, 28(2), 505-520.
  • Windschitl, M., Thompson, J. & Braaten, M. (2007) beyond the scientific method: model-based inquiry as a new paradigm of preference for school science investigations. Science Education, 92(5), 941–967.
  • Yalaki, Y., İrez, S., Doğan, N. ve Çakmakçı, G. (2014). Bilimin doğası görüşleri testi (BİLTEST). XI. Ulusal Fen Bilimleri ve Matematik Eğitimi Kongresi. 11-14 Eylül 2014, Adana, Türkiye.
  • Yıldırım, A ve Şimşek, H. (2005). Sosyal bilimlerde nitel araştırma yöntemleri. Ankara: Seçkin Yayıncılık.
Hacettepe Üniversitesi Eğitim Fakültesi Dergisi-Cover
  • Başlangıç: 1986
  • Yayıncı: Hacettepe Üniversitesi Eğitim Fakültesi Dekanlığı