Developing Students' Understanding and Thinking Process by Model Construction

ÖZET: Günümüzde modellerin fen kavramlarının anlaşılmasında temel rol oynadığı yaygın biçimde kabul görmektedir. Bu çalışma öğrencilerin anlama ve düşünmelerini model oluşturma yöntemi ile geliştirmeyi amaçlamaktadır. Bu çalışma bir merkez ilköğretim devlet okulu 7. sınıf öğrencileri ile okul sonrası etkinliği çerçevesinde gerçekleştirilmiştir. Çalışma sürecinde, öğrenciler hayvanlara ait ortak çevresel faktörleri veri toplama, resimleme, cisim tasarlama ve gözlem raporu hazırlama yolu ile araştırırlar. Gözlem raporlarının hazırlanması öğrencilerin deneyimlerini ve soyut kavramları ifade etmelerine olanak sağlamaktadır. Buna ilave olarak öğrencilerin deney raporları araştırmacının dolaylı olarak öğrencilerin zihinlerinde oluşturdukları modelleri anlamasına fırsat sağlamaktadır. Öğrenciler ilk etapta oluşturdukları modelleri benzeşim yoluyla yeni modellere dönüştürerek geliştirmektedir. Bulgular model oluşturma ve geliştirme yönteminin fen öğretimine olumlu katkı sağlayacağını göstermektedir.

Öğrencilerin Anlama ve Düşünme Mekanizmalarının Model Oluşturma Yoluyla Geliştirilmesi

ABSTRACT: There is growing recognition that models play a fundamental role in the comprehension of science concepts. This paper aims at enhancing students’ understanding and thinking by model construction. Seventh grade middle school students from an urban public school participated in this study as a part of their weekly science club that met after the regular school hours. During the course of the study, the students investigated several common environmental factors about animals by collecting data, made drawings, constructed objects, and wrote journals. The use of journals allowed them to reflect on their experience and the abstract concepts. It also allowed the researchers to have indirect access to the models underlying the meanings students were making every week. Students developed initial models, came up with analogies, and constructed newer models by improving the initial ones. The findings show that model criticism and modification processes are promising activities for science education.

___

  • Anderson, J. R., Boyle, C. F., & Lewis, M. W. (1990). Cognitive modeling and intelligent tutoring. Artificial Intelligent, 42,7-50.
  • Boulter, C. (1998). What’s going to happen in the eclipse tonight?: Rethinking perspectives on primary school science. International Journal of Science Education. 20(4), 487-500.
  • Buckley, B. C. (2000). Interactive multimedia and model-based learning in biology. International Journal of Science Education, 22(9), 895-935.
  • Clement, J. (1985). A method experts use to evaluate the validity of models used as problem representations in science and mathematics. Paper presented at the meeting of the American Educational Research Association, Chicago.
  • Clement, J. (1988). Learning via model construction and criticism: Protocol evidence on sources of creativity in science. Massachusetts University., Amherst. ERIC Document Reproduction Service. ED 303 357.
  • Clement, J. (2000). Model based learning as a key research area for science education. International Journal of Science Education, 20(9), 1041-1053.
  • Gilbert, J. (1995). The role of models and modeling in some narratives in science learning. Presented at the Annual Meeting of the American Educational Research Association, April 18-22. San Francisco, CA, USA.
  • Gilbert, S. W. (1999). The model as a vehicle for understanding the nature and processes of science. ERIC Document Reproduction Service. ED 443 657.
  • Gilbert, S. W. (1988). Student knowledge of models and science: Some findings and relationships. Paper presented at the meeting of the National Association for Research in Science Teaching, Lake of the Ozarks, MO.
  • Harrison, A. G., & Treagust, D. F. (2000). A typology of school science models. International Journal of Science Education, 22(9), 1011-1026.
  • Ingham, A. M. & Gilbert, J. K. (1991). The use of analogue models by students of chemistry at higher education level. International Journal of Science Education, 13, 193-202.
  • Langer, J. (1994). From acting to understanding: The comparative development of meaning. In W. F. Overton & D. S. Palermo (Eds.), The nature and ontogenesis of meaning (pp. 191-212). Hillsdale, NJ: Lawrence Erlbaum.
  • Osborne, R. J., & Wittrock, M. C. (1983). Learning science: A generative process. Science Education, 67(4), 449-458.
  • Strauss, A. & Corbin, J. (1998). Basics of Qualitative Research (2nd ed.). New Delhi: Sage.
  • White, B. Y. (1993). Thinker Tools: Causal models, conceptual change, and science education. Cognition and Instruction, 10, 1-100.