On the $n$th-Order subfractional Brownian motion

On the $n$th-Order subfractional Brownian motion

In the present work, we introduce the $n$th-Order subfractional Brownian motion $S_H^n = \lbrace S_H^n(t),~t\geq 0\rbrace$ with Hurst index $H\in (n-1,n)$ and order $n\geq 1$; then we examine some of its basic properties: self-similarity, long-range dependence, non Markovian nature and semimartingale property. A local law of iterated logarithm for $S_H^n$ is also established.

___

  • [1] M.A. Arcones, On the law of the iterated logarithm for Gaussian processes, J. Theoret. Probab. 8 (4), 877-903, 1995.
  • [2] T. Bojdecki, L. Gorostiza and A. Talarczyk, Sub-fractional Brownian motion and its relation to occupation times, Statist. Probab. Lett. 69 (4), 405-419, 2004.
  • [3] T. Bojdecki, L. Gorostiza and A. Talarczyk, Limit theorems for occupation time fluctuations of branching systems i: long-range dependence, Stochastic Process. Appl. 116 (1), 1-18, 2006.
  • [4] T. Bojdecki, L. Gorostiza and A. Talarczyk, Some extensions of fractional Brownian motion and sub-fractional Brownian motion related to particle systems, Electron. Commun. Probab. 12, 161-172, 2007.
  • [5] J.J. Collins and C.J. De Luca, Upright, correlated random walks: A statisticalbiomechanics approach to the human postural control system, Chaos 5 (1), 57-63, 1995.
  • [6] R.M. Dudley, R. Norvaia and R. Norvaia, Concrete Functional Calculus, Springer, 2011.
  • [7] M. El Omari, Notes on spherical bifractional Brownian motion, Mod. Stoch. Theory Appl. 9 (3), 339-355, 2022.
  • [8] M. El Omari, An $\alpha$-order fractional Brownian motion with Hurst index $H\in (0,1)$ and $\alpha\in\R_+$, Sankhya A 85 (1), 572-599, 2023.
  • [9] M. El Omari, Mixtures of higher-order fractional Brownian motions, Comm. Statist. Theory Methods 52 (12), 4200-4215, 2023.
  • [10] M. El Omari, Parameter estimation for nth-order mixed fractional Brownian motion with polynomial drift, J. Korean Stat. Soc. 52, 450-461, 2023.
  • [11] C.W.J. Granger, The typical spectral shape of an economic variable, Econometrica 34 (1), 150-161, 1966.
  • [12] D.P. Huy, A remark on non-Markov property of a fractional Brownian motion, Vietnam J. Math. 31 (3), 237-240, 2003.
  • [13] R. Jennane and R. Harba, Fractional Brownian motion: A model for image texture, EUSIPCO Signal Process. 3, 1389-1392, 1994.
  • [14] W.S. Kuklinski, K. Chandra, U.E. Ruttirmann and R.L. Webber, Application of fractal texture analysis to segmentation of dental radiographs, Proc. SPIE 1092, Medical Imaging III: Image Processing 1092, 111-117, 1989.
  • [15] C.M. Lee, Generalizations of l’Hôpitals rule, Proc. Amer. Math. Soc. 66 (2), 315-320, 1977.
  • [16] T. Lundahl, W.J. Ohley, S.M. Kay and R. Siffert, Fractional Brownian motion: A maximum likelihood estimator and its application to image texture, IEEE Trans. Med. Imag. 5 (3), 152-161, 1986.
  • [17] B.B. Mandelbrot and J.W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev. 10 (4), 422-437, 1968.
  • [18] A.I. McLeod and K.W. Hipel, Preservation of the rescaled adjusted range: 1. A reassessment of the Hurst phenomenon, Water Resour. Res. 14 (3), 491-508, 1978.
  • [19] A.P. Pentland, Fractal-based description of natural scenes, IEEE Trans. Pattern Anal. Mach. Intell. 6 (6), 661-674, 1984.
  • [20] E. Perrin, R. Harba, C. Berzin-Joseph, I. Iribarren, and A. Bonami, nth-order fractional Brownian motion and fractional gaussian noises, IEEE Trans. Signal Process. 49 (5), 1049-1059, 2001.
  • [21] D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer Science & Business Media, 1999.
  • [22] G. Shen, C. Chen and L. Yan, Remarks on sub-fractional Bessel processes, Acta Math. Sci. Ser. 31 (5), 1860-1876, 2011.
  • [23] C. Tudor, Some properties of the sub-fractional Brownian motion, Stochastics 79 (5), 431-448, 2007.
  • [24] C. Tudor, On the Wiener integral with respect to a sub-fractional Brownian motion on an interval, J. Math. Anal. Appl. 351 (1), 456-468, 2009.
  • [25] W. Willinger, M.S. Taqqu, W.E. Leland and D.V. Wilson, Self-similarity in highspeed packet traffic: analysis and modeling of ethernet traffic measurements, Statist. Sci. 10 (1), 67-85, 1995.
  • [26] H. Qi and L. Yan, A law of iterated logarithm for the subfractional Brownian motion and an application, J. Inequal. Appl. 2018 (96), 1-18, 2018.
  • [27] W.H. Young, On indeterminate forms, Proc. Lond. Math. Soc. 2 (1), 40-76, 1910.
  • [28] M. Zabat, M. Vayer-Besançon, R. Harba, S. Bonnamy and H. Van Damme, Surface topography and mechanical properties of smectite films, Trends in Colloid and Interface Science XI, 96-102, Springer, Berlin, 1997.
Hacettepe Journal of Mathematics and Statistics-Cover
  • Yayın Aralığı: 6
  • Başlangıç: 2002
  • Yayıncı: Hacettepe Üniversitesi Fen Fakultesi
Sayıdaki Diğer Makaleler

Lower and upper stochastic bounds for the joint stationary distribution of a non-preemptive priority retrial queueing system

Houria HABLAL, Nassim TOUCHE, Lalamaghnia ALEM, Amina Angelika BOUCHENTOUF, Mohamed BOUALEM

$A$-numerical radius : New inequalities and characterization of equalities

Pintu BHUNİA, Kallol PAUL

Malcev Yang-Baxter equation, weighted $\mathcal{O}$-operators on Malcev algebras and post-Malcev algebras

Fattoum HARRATHİ, Sami MABROUK, Othmen NCİB, Sergei SILVESTROV

Actions of generalized derivations on prime ideals in $*$-rings with applications

Adnan ABBASİ, Abdul KHAN, Mohammad Salahuddin KHAN

Analysis and modelling of competing risks survival data using modified Weibull additive hazards regression approach

Habbiburr REHMAN, N. CHANDRA, Ali ABUZAİD

On the weak convergence and the uniform-in-bandwidth consistency of the general conditional $U$-processes based on the copula representation: multivariate setting

Salim BOUZEBDA

A new adjusted Bayesian method in Cox regression model with covariate subject to measurement error

Hatice IŞIK, Duru KARASOY, Uğur KARABEY

A study on the tangent bundle with the vertical generalized Berger type deformed Sasaki metric

Saadia CHAOUİ, Abderrahım ZAGANE, Aydın GEZER, Nour Elhouda DJAA

On a minimal set of generators for the algebra $H^*(BE_6; \mathbb F_2)$ as a module over the Steenrod algebra and applications

Nguyen Khac TİN

On the $n$th-Order subfractional Brownian motion

El Omari MOHAMED, Mabdaoui MOHAMED